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Исследовано влияние мутации Leu43Pro в гене TPM1, кодирующем сердечную изоформу тропо-
миозина, на структуру и свойства молекулы тропомиозина. Для этого был получен рекомбинант-
ный препарат тропомиозина с аминокислотной заменой L43P в обеих α-цепях двойной суперспи-
рали тропомиозина, т. е. с заменой канонических остатков Leu43 на неканонические остатки Pro, и
исследовано влияние этой замены на структурно-функциональные свойства тропомиозина. Мето-
дом спектроскопии кругового дихроизма показано, что замена L43P существенно нарушает α-спи-
ральную структуру молекулы тропомиозина. Методом дифференциальной сканирующей калори-
метрии установлено, что эта аминокислотная замена вызывает серьезные изменения в доменной
структуре молекулы тропомиозина, приводя к значительной дестабилизации N-концевой части мо-
лекулы. При измерениях вязкости растворов тропомиозина показано, что замена L43P снижает вяз-
кость тропомиозина более чем в 7 раз по сравнению с вязкостью контрольного препарата тропо-
миозина дикого типа. Методом соосаждения тропомиозина с F-актином установлено, что замена
L43P существенно снижает сродство тропомиозина к F-актину. Полученные данные наглядно сви-
детельствуют о том, что аминокислотная замена L43P в обеих α-цепях двойной спирали молекулы
тропомиозина значительно изменяет как структуру молекулы, так и функциональные свойства сер-
дечного тропомиозина. 
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Тропомиозин (Tpm) – это актин-связываю-
щий белок, играющий ключевую роль в Ca2+-за-
висимой регуляции сокращения скелетных и сер-
дечных мышц. Молекула Tpm представляет собой
димер, состоящий из двух α-cпиpальных поли-
пептидных цепей, образующих двойную левоза-
крученную суперспираль (coiled coil), способную
взаимодействовать с актиновым филаментом.
Димеpные молекулы Tpm обладают выcоким
cpодcтвом к актиновым нитям (F-актин) и pаcпо-
лагаютcя на иx повеpxноcти; при этом соcедние
димеpы Tpm cвязываютcя между cобой по прин-
ципу «голова к xвоcту» и обpазуют непpеpывный
тяж, котоpый тянетcя вдоль вcей актиновой нити
[1, 2]. 

Характерной особенностью первичной струк-
туры полипептидных цепей Tpm, образующих
двойную суперспираль, является периодичность:
их аминокислотная последовательность органи-
зована в виде повторяющихся мотивов (гептад) из
семи аминокислот, где каждой аминокислоте
присвоена латинская буква (а b cd e f g )n. В первую
очередь, в положениях a и d требуется наличие
гидрофобных остатков (таких, как валин, лейцин
и изолейцин), взаимодействие между которыми
является главным фактором стабилизации двой-
ной суперспирали. Другие аминокислотные
остатки в этих положениях обладают гораздо
меньшей способностью стабилизировать двой-
ную суперспираль Tpm, тогда как пролин в таком
положении не стабилизирует, а, напротив, деста-
билизирует двойную α-спираль. Кроме того, по-
ложения е и g гептадного повтора обычно заняты
аминокислотными остатками с противоположно

Сокращения: Tpm – тропомиозин, F-актин – фибpил-
ляpный актин, КД – круговой дихроизм, ДСК – диффе-
ренциальная сканирующая калориметрия.

УДК 577.3

МОЛЕКУЛЯРНАЯ БИОФИЗИКА



52

БИОФИЗИКА  том 70  № 1  2025

НЕФЕДОВА и др.

заряженными радикалами, электростатическое
взаимодействие между которыми дополнительно
стабилизирует двойную суперспираль молекулы
Tpm. И, наконец, оставшиеся позиции b, c и f геп-
тадного повтора заняты остатками с полярными
радикалами, поскольку они формируют поверх-
ность двойной спирали, находятся в непосред-
ственном контакте с растворителем и, кроме то-
го, отвечают за взаимодействие Tpm с белками-
партнерами, такими как актин и тропонин [2]. 

К настоящему времени в гене TPM1, кодирую-
щем сердечную изоформу Tpm (Tpm1.1), выявле-
но много мутаций, ассоциированных с развитием
таких тяжелых наследственных заболеваний че-
ловека, как гипертрофическая и дилатационная
кардиомиопатии, а также некомпактная кардио-
миопатия левого желудочка [3–6]. Для некоторых
из них удалось выяснить, хотя бы отчасти, те мо-
лекулярные механизмы, которые лежат в основе
развития заболевания. Для этого получали ре-
комбинантные препараты Tpm1.1 с аминокислот-
ными заменами, соответствующими таким мута-
циям, и исследовали влияние этих замен на
структуру молекулы Tpm1.1 и ее функциональные
свойства, используя для этих целей широкий
спектр различных методов и подходов. К числу
таких кардиомиопатических мутаций в гене
TPM1, для которых был достаточно хорошо изу-
чен механизм их патогенности, можно отнести
мутации D175N и E180G [7–11], I172T, E180V и
L185R [12], M8R, K15N, A277V, M281T и I284V
[13], E40K и E54K [11, 14], D84N [15], K15N [16],
D230N [17], T237S [18], A219V [19], E98K [20] и ряд
других. Однако для большинства кардиомиопа-
тических мутаций в гене TPM1, идентифициро-
ванных к настоящему времени и приведенных в
базе данных ClinVar, мало что пока известно о мо-
лекулярном механизме, лежащем в основе их па-
тогенности. Среди множества таких мутаций в ге-
не TPM1 обнаружено всего 7 мутаций, приводя-
щих к замене лейцина, серина или аланина на
остаток пролина, и среди них – только две замены
канонического остатка лейцина в положении a
гептадного повтора на абсолютно неканонический
пролин: L43P (c.128T>C) и L57P (c.170T>C). 

Как отмечалось выше, введение пролина в по-
ложение a гептадного повтора должно заметно
дестабилизировать структуру двойной α-спирали
молекулы Tpm. Поэтому можно предположить,
что замены L43P или L57P в этом положении
должны оказывать влияние как на структуру мо-
лекулы Tpm1.1, так, по-видимому, и на ее функ-
циональные свойства (такие, например, как спо-
собность Tpm1.1 взаимодействовать с актином).
Для проверки этого предположения мы получили
рекомбинантный препарат сердечной изоформы
Tpm1.1 с одной из этих аминокислотных замен
(L43P) в обеих α-цепях двойной суперспирали и
исследовали ее влияние на структуру молекулы

Tpm1.1 и на ее способность взаимодействовать с
F-актином. 

МАТЕРИАЛЫ И МЕТОДЫ

Получение белков. Рекомбинантный препарат
сердечной изоформы Tpm1.1 человека с амино-
кислотной заменой L43P в обеих α-цепях молеку-
лы получали, как описано ранее [19, 20]. Оба ис-
следуемых препарата Tpm1.1 – Tpm1.1 L43P и
контрольный Tpm1.1 дикого типа (Tpm1.1 WT) –
несли на N-конце дополнительный дипептид
Ala-Ser для имитации естественного N-концевого
ацетилирования Tpm [21]. Мутантный препарат
Tpm1.1 L43P был получен в бактериальной экс-
прессионной плазмиде pet23a+ методом ПЦР-
опосредованного сайт-направленного мутагенеза
с использованием ДНК-полимеразы Q5 (NEB,
New England Biolabs, США). Для получения кон-
струкции, несущей мутацию L43P, использовали
следующие олигонуклеотиды: 5'-GAAGATGAG-
CCGGTGTCACTGCAAAAG-3' в качестве прямо-
го праймера (мутированный кодон подчеркнут) и
5'-CAGCTGCTTGCTCCTGTCTTCCG-3' в каче-
стве обратного праймера. Полученная плазмида
была проверена путем секвенирования («Евро-
ген», Россия) для подтверждения замены. Экс-
прессию и очистку белка проводили, как описано
ранее [13]. Концентрацию препаратов Tpm1.1 WT
и Tpm1.1 L43P определяли спектрофотометриче-
ски при 280 нм с использованием коэффициента
экстинкции E1%, равного 2.73 см−1.

Актин получали из скелетных мышц кролика
по стандартной методике [22]. Мономерный
G-актин полимеризовали в филаменты F-актина,
добавляя к нему KCl и MgCl2 до конечной кон-
центрации 100 и 4 мМ соответственно. 

Круговой дихроизм. Спектры кругового дихро-
изма (КД) препаратов Tpm (1 мг/мл) в дальнем
УФ-диапазоне регистрировали при 5°C на дихро-
графе Chirascan Circular Dichroism Spectrometer
(Applied Photophysics, Великобритания) в кварце-
вой кювете с длиной оптического пути 0.2 мм. Из-
мерения теплового разворачивания белка прово-
дили, как описано ранее [12, 20], путем измере-
ния молярной эллиптичности Tpm при 222 нм
(θ222) в диапазоне температур от 5°С до 75°С при
постоянной скорости нагрева 1°С/мин. Экспери-
менты проводили в 30 мМ HEPES-Na-буфере,
pH 7.3, содержащем 100 мМ NaCl и 2 мМ дитио-
треитола; концентрация белка составляла
1 мг/мл. Обратимость процесса тепловой денату-
рации препаратов Tpm оценивали путем повтор-
ного нагревания образцов непосредственно по-
сле их охлаждения. Тепловое разворачивание
обоих препаратов Tpm, Tpm1.1 WT и Tpm1.1 L43P,
было полностью обратимым. 
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Дифференциальная сканирующая калоримет-
рия. Эксперименты методом дифференциальной
сканирующей калориметрии (ДСК) проводили,
как описано ранее [19, 20], на дифференциальном
сканирующем микрокалориметре MicroCal VP-
Capillary (Malvern Instruments, США) при скоро-
сти нагрева 1 К/мин в 30 мМ HEPES-Na-буфере,
pH 7.3, содержащем 100 мМ NaCl. Концентрация
белка составляла 2 мг/мл. Образцы Tpm были
восстановлены перед этими экспериментами пу-
тем нагревания при 60°C в течение 20 мин в при-
сутствии 3 мМ дитиотреитола. После такой про-
цедуры все образцы Tpm находились в полностью
восстановленном состоянии [23]. Тепловая дена-
турация исследованных препаратов Tpm была
полностью обратимой, что позволяло провести
деконволюцию кривых теплопоглощения, то есть
их разложение на отдельные тепловые переходы
(калориметрические домены). Деконволюцион-
ный анализ был выполнен с использованием про-
граммного обеспечения Origin v. 7.5 (MicroCal
Inc., США), как было описано ранее [23].

Вискозиметрия. Измерения вязкости раство-
ров Tpm проводили с помощью микровискози-
метра с падающим шариком фирмы Anton Paar
AMVn (США) в капилляре емкостью 0.5 мл при
20°C, как описано ранее [13, 20, 24]. Все измере-
ния проводили при концентрации Tpm 4.0 мг/мл
в 30 мм HEPES-Na-буфере (рН 7.3), содержащем
100 мм NaCl и 2 мМ дитиотреитола. Вязкость
каждого образца Tpm измеряли не менее трех раз,
значения вязкости усредняли по сравнению с
вязкостью буфера. 

Соосаждение тропомиозина с F-актином. Срод-
ство препаратов Tpm к F-актину оценивали с по-
мощью анализа их совместного осаждения [13,
20]. Вкратце, F-актин в концентрации 10 мкМ

смешивали с увеличивающимися концентрация-
ми Tpm при 20°C в 30 мМ HEPES-Na-буфере,
pH 7.3, содержащем 200 мМ NaCl, после чего
F-актин осаждали ультрацентрифугированием
при 100 000 g в течение 40 мин, и эквивалентные
образцы осадка и супернатанта подвергали элек-
трофорезу в полиакриламидном геле в присутствии
додецилсульфата натрия [25]. Белковые полосы
сканировали и анализировали с помощью про-
граммного обеспечения ImageJ 1.53k (Scion Corp.,
США). Для каждого образца Tpm проводили два-
три измерения.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Прежде всего мы исследовали влияние мута-

ции L43P на вторичную структуру молекулы
Tpm1.1 (далее – просто Tpm), используя метод
КД. В первую очередь мы сравнили спектр КД,
полученный для Tpm с мутацией L43P, со спек-
тром для контрольного Tpm WT (рис. 1). Хорошо
видно, что величина отрицательного максимума
при 222 нм, отражающего содержание α-спира-
лей в белке, у Tpm L43P заметно ниже (на 16 %),
чем у Tpm WT. Это свидетельствует о том, что му-
тация L43P существенно нарушает α-спиральную
структуру молекулы Tpm. Затем мы исследовали
методом КД тепловую денатурацию Tpm L43P,
регистрируя температурные зависимости средней
остаточной эллиптичности при 222 нм для этого
препарата и сравнивая их с зависимостями, полу-
ченными для Tpm WT (рис. 2). Результаты этих
экспериментов свидетельствуют о том, что такие
зависимости существенно различаются у
Tpm L43P и Tpm WT, особенно в области относи-
тельно высоких температур (выше 35°С) (рис. 2а).
Наиболее отчетливо это различие видно при пе-
реводе интегральных кривых, приведенных на
рис. 2а, в дифференциальную форму (рис. 2б). В
этом случае отчетливо видна разница между
Tpm L43P и Tpm WT: у Tpm L43P почти полно-
стью исчезает плечо в области с 50°С до 60°С, ха-
рактерное для Tpm WT, а главный пик, наблюда-
емый для Tpm L43P при 42.7°С, смещен на 3.3°С
в сторону более низких значений температуры
относительно пика для Tpm WT (рис. 2б). Все
это свидетельствует о том, что мутация L43P
вызывает существенную дестабилизацию моле-
кулы Tpm. 

Для более подробного анализа структурных
изменений, вызываемых в молекуле Tpm мутаци-
ей L43P, мы применили метод ДСК, позволяю-
щий проводить деконволюционный анализ тем-
пературных зависимостей теплопоглощения бел-
ка, т. е. разлагать эти зависимости на отдельные
тепловые переходы (калориметрические доме-
ны), отражающие тепловую денатурацию различ-
ных участков белковой молекулы. Данные, полу-
ченные методом ДСК при сравнении доменных

Рис. 1. Спектры КД препаратов Tpm дикого типа
(Tpm WT) и мутантного белка с заменой L43P
(Tpm L43P), зарегистрированные при 5°С и концен-
трации белка 1 мг/мл. 
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Рис. 2. Температурные зависимости средней остаточ-
ной эллиптичности при 222 нм, полученные методом
КД для Tpm WT и Tpm L43P. Данные представлены
как в интегральном виде (а), так и в дифференциаль-
ном виде (б), т.е. в виде первых производных от зави-
симостей, представленных на рисунке (а). 

Рис. 3. Температурные зависимости избыточной теп-
лоемкости (Cp), полученные методом ДСК для
Tpm WT (а) и Tpm L43P (б), и результаты разложения
этих зависимостей на отдельные тепловые переходы
(калориметрические домены 1, 2 и 3, показанные
пунктиром). 

Таблица 1. Значения калориметрических параметров для отдельных тепловых переходов (калориметрических
доменов) препаратов сердечного тропомиозина 

Препарат Tpm Tm, °C ΔHcal, кДж/моль ΔHcal, % от суммарной Суммарная ΔHcal,, 
кДж/моль

Tpm WT 1280

Домен 1 36.8 250 20

Домен 2 42.7 360 28

Домен 3 50.4 670 52

Tpm L43P 730

Домен 1 38.3 405 55

Домен 2 41.2 290 40

Домен 3 50.0 35 5

Примечание. Значения калориметрических параметров получены из данных ДСК (рис. 3) для препаратов Tpm
дикого типа (Tpm WT) и с мутацией L43P (Tpm L43P). Ошибка приведенных значений температуры максимума
теплового перехода (Tm) не превышала ±0.2°C, а относительная ошибка значений калориметрической
энтальпии (ΔHcal) не превышала ±10%.
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структур Tpm L43P и Tpm WT, представлены на
рис. 3 и в табл. 1. Сразу отметим, что значение ка-
лориметрической энтальпии (ΔHcal), т. е. площа-
ди под кривой теплопоглощения, в случае
Tpm L43P намного ниже (в 1.75 раза), чем в случае
Tpm WT (см. табл. 1). Это обусловлено главным
образом тем, что в случае Tpm L43P на термо-
грамме почти полностью исчезает самый термо-
стабильный калориметрический домен 3, харак-
терный для Tpm WT (рис. 3). При этом у
Tpm L43P, по сравнению с Tpm WT, на 20% сни-
жается энтальпия домена 2, но заметно повыша-
ется (на 60%) энтальпия домена 1 (см. табл. 1).
Все это свидетельствует о том, что мутация L43P
вызывает серьезные изменения в доменной
структуре молекулы Tpm. 

В предыдущих исследованиях была проведена
идентификация калориметрических доменов на
термограмме Tpm WT (т. е. было выявлено их со-
ответствие определенным частям молекулы Tpm)
и было установлено, что домены 2 и 3 отражают
соответственно тепловую денатурацию C-конце-
вой и N-концевой частей молекулы Tpm [9, 23],
тогда как наименее термостабильный домен 1 от-
ражает, скорее всего, денатурацию некоторых
других областей молекулы, таких как ее средняя
часть или перекрывающееся соединение между
N- и C-концами соседних молекул Tpm [13, 23].
Исходя из этих данных и сопоставляя их с резуль-
татами ДСК (рис. 3а,б), можно заключить, что
аминокислотная замена L43P приводит к очень
серьезной дестабилизации N-концевой части мо-
лекулы Tpm; в результате некоторые области в
этой части молекулы денатурируют при гораздо
более низких температурах, повышая таким обра-
зом энтальпию наименее термостабильного кало-
риметрического домена 1. 

Результаты, полученные методом ДСК и пока-
зывающие значительную дестабилизацию N-кон-
цевой части молекулы Tpm L43P (рис. 3б), позво-
ляют предположить, что аминокислотная замена
L43P, расположенная довольно близко к N-концу
молекулы, может оказывать влияние на взаимо-
действие между N- и C-концами молекул Tpm,
необходимое для полимеризации Tpm с образова-
нием длинных нитей. Чтобы проверить это пред-
положение, мы измерили вязкость раствора
Tpm L43P и сравнили ее с вязкостью Tpm WT.
Результаты показали, что после вычитания вязко-
сти буфера вязкость раствора Tpm L43P
(0.08 ± 0.02 мПа·с) резко отличается от вязкости
для Tpm WT (0.61 ± 0.03 мПа·с). Это свидетель-
ствует о том, что аминокислотная замена L43P,
снижающая вязкость раствора Tpm более чем в
7 раз, оказывает сильное влияния на взаимодей-
ствие между N- и C-концами молекул Tpm, прак-
тически предотвращая формирование длинных
нитей, образуемых молекулами Tpm при их поли-
меризации. 

Образование длинных нитей Tpm является не-
обходимым условием для полноценного взаимо-
действия молекул Tpm с актиновыми филамента-
ми. Поэтому легко предположить, что замена
L43P, значительно снижающая вязкость раствора
Tpm, должна оказывать существенное влияние на
способность молекул Tpm связываться с F-акти-
ном. Для проверки этого предположения мы ис-
следовали влияние аминокислотной замены
L43P на сродство Tpm к F-актину, используя ме-
тод соосаждения Tpm с F-актином. Суть такого
подхода состоит в том, что F-актин, в отличие от
Tpm, осаждается при ультрацентрифугировании,
а Tpm может попасть в осадок только вследствие
его взаимодействия с актиновыми филаментами.
Полученные результаты свидетельствуют о том,

Рис. 4. Влияние аминокислотной замены L43P на сродство Tpm к F-актину. Результаты получены при анализе сооса-
ждения Tpm WT и Tpm L43P с F-актином и представлены в виде зависимости доли F-актина, насыщенного молеку-
лами Tpm, от концентрации свободного Tpm, обнаруженного в супернатанте. 
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что аминокислотная замена L43P существенно
снижает сродство Tpm к F-актину. В условиях,
когда актиновые филаменты полностью насыще-
ны молекулами Tpm WT (при концентрации
Tpm WT, равной 6 мкМ), насыщение филаментов
молекулами Tpm с заменой L43P едва достигает
25–30% (рис. 4). 

Интересно отметить, что сходная ситуация на-
блюдалась нами ранее при исследовании влияния
кардиомиопатической мутации M8R в гене TPM1
на свойства сердечного Tpm [13]. Было показано,
что аминокислотная замена M8R, расположен-
ная поблизости от N-конца молекулы Tpm, резко
снижает, подобно замене L43P, как вязкость рас-
твора Tpm, так и сродство Tpm к F-актину [13].
Следует отметить, однако, что в последующих ис-
следованиях было установлено, что в присут-
ствии полного тропонинового комплекса срод-
ство Tpm M8R к F-актину почти полностью вос-
станавливается и мало отличается от сродства,
характерного для Tpm WT [26]. Было высказано
предположение, что тропонин может «прижи-
мать» Tpm к поверхности актинового филамента,
восстанавливая взаимодействие между молекула-
ми Tpm на поверхности филамента, нарушенное
мутацией M8R [26]. Не исключено, что нечто по-
добное может, в принципе, иметь место и в случае
Tpm с аминокислотной заменой L43P. Проверка
этого предположения составит предмет наших
дальнейших исследований в данном направ-
лении. 

ЗАКЛЮЧЕНИЕ
Полученные данные наглядно свидетельству-

ют о том, что аминокислотная замена L43P в обе-
их α-цепях двойной спирали молекулы Tpm (т. е.
замена канонического остатка Leu в положении a
гептадного повтора на абсолютно неканониче-
ский Pro) значительно изменяет структуру и
свойства Tpm. Представляется крайне маловеро-
ятным, что такая серьезная мутация в гене TPM1
могла бы иметь место в гомозиготном состоянии,
поскольку в этом случае она, скорее всего, приво-
дила бы к преждевременной смерти плода еще до
рождения. Более вероятным, однако, представля-
ется наличие мутации L43P в гене TPM1 в гетеро-
зиготном состоянии; в этом случае молекулы Tpm
могли бы нести мутацию лишь в одной из двух
α-цепей двойной спирали. Для проверки этого
предположения следует получить препараты Tpm
с заменой L43P лишь в одной из двух цепей моле-
кулы, что является весьма непростой задачей.
Тем не менее, в дальнейшем мы собираемся полу-
чить такие препараты и выяснить, как влияет за-
мена L43P в одной из двух α-цепей на структуру и
свойства сердечного Tpm. Другой важной задачей
наших дальнейших исследований является изуче-
ние функциональных свойств регулируемых ак-

тиновых филаментов, содержащих тропонин и
Tpm, несущий замену L43P либо в обеих α-цепях,
либо только в одной из них. 
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 Effects of Leu43Pro Mutation in the TPM1 Gene on the Structure and Properties 
of Cardiac Tropomyosin
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We investigated the effect of the Leu43Pro mutation in the TPM1 gene encoding the cardiac tropomyosin iso-
form on the structure and properties of the tropomyosin molecule. For this purpose, we obtained a recombi-
nant tropomyosin preparation with the L43P amino acid substitution in both α-chains of the tropomyosin
double superhelix, i.e. with the substitution of the canonical Leu43 residues by the non-canonical Pro resi-
dues, and studied the effect of this substitution on the structural and functional properties of tropomyosin.
Circular dichroism spectroscopy showed that the L43P substitution significantly disrupts the α-helical struc-
ture of the tropomyosin molecule. Differential scanning calorimetry showed that this amino acid substitution
causes serious changes in the domain structure of the tropomyosin molecule, leading to significant destabi-
lization of the N-terminal part of the molecule. Measurements of the viscosity of tropomyosin solutions
showed that the L43P substitution reduced the viscosity of tropomyosin by more than 7 times compared to
the viscosity of the control wild type tropomyosin preparation. It was found, using the method of co-precip-
itation of tropomyosin with F-actin, that the L43P substitution significantly reduced the affinity of tropomy-
osin for F-actin. The data obtained clearly indicate that the L43P substitution in both α-chains of the double
helix of the tropomyosin molecule significantly changes both the structure of the molecule and the functional
properties of cardiac tropomyosin.

Keywords: tropomyosin, circular dichroism, differential scanning calorimetry




