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Описаны результаты исследования электронного транспорта в хлоропластах in situ (листья) двух ви-
дов растений рода Cucumis – теневыносливого вида С. sativus (огурец) и светолюбивого вида С. melo
(дыня), выращенных в условиях сильного (800–1000 мкмоль фотонов · м−2 · с−1) и умеренного осве-
щения (50–125 мкмоль фотонов · м−2 · с−1). За процессами электронного транспорта следили по
сигналу электронного парамагнитного резонанса (ЭПР) от Р700

+  (окисленный реакционный центр
фотосистемы 1), по поглощению света (разностный сигнал A870−830 от Р700

+  )  и по выходу флуорес-
ценции хлорофилла а. Показано, что растения, выросшие при высокой интенсивности света, ха-
рактеризуются более быстрыми изменениями редокс-состояния Р700 по сравнению с растениями,
выращенными при низкой (умеренной) интенсивности света. Полученные данные обсуждаются в
контексте механизмов регуляции электронного транспорта в хлоропластах теневыносливых и све-
толюбивых видов растений рода Cucumis.
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Фотосинтезирующие организмы функциони-
руют в изменяющихся условиях окружающей
среды. Выяснение физико-химических механиз-
мов регуляции световых стадий фотосинтеза,
обеспечивающих оптимальное функционирова-
ние) растений, − актуальная задача биофизики и
биохимии. Фотосинтетический аппарат (ФСА)
оксигенных фотосинтетических организмов
(растения, водоросли и цианобактерии [1–3]) со-
держит пигмент-белковые комплексы фотоси-
стемы 1 (ФС I) и фотосистемы 2 (ФС II). Пигмен-
ты светособирающих антенн ФС I и ФС II погло-
щают свет; энергия нейтрального возбуждения
этих пигментов мигрирует к реакционным цен-
трам, в которых происходит разделение зарядов.

В результате совместной работы ФС I и ФС II
электроны переносятся от молекул воды, разлага-
емых в ФС II (2Н2О → О2 + 4е− + 4Н+), к молеку-
лам NADP+ (ФС I → NADP+), восстанавливае-
мым до NADPH (NADP+  + 2е− + Н+ → NADPH).
Работа цепи электронного транспорта (ЦЭТ) со-
пряжена с генерацией транс-тилакоидной разно-
сти электрохимических потенциалов ионов водо-
рода (ΔμH+). За счет энергии ΔμH+ в АТФ-синтаз-
ных комплексах (CF0−CF1) образуются молекулы
АТФ из AДФ и неорганического фосфата (орто-
фосфат, Pi). В строме хлоропластов (простран-
ство между оболочкой хлоропласта и тилакоида-
ми) находятся ферменты цикла Кальвина–Бен-
сона (ЦКБ), катализирующие восстановление
СО2 и образование углеводов за счет энергии мо-
лекул NADPH и АТФ. 

Приведенная на рис. 1 схема иллюстрирует
разнообразие путей переноса электронов в хлоро-
пластах растений. Цепь нециклического элек-
тронного транспорта (НЭТ) обеспечивает пере-
нос электронов от ФС II к ФС I, и далее от ФС I

Сокращения: ФСА – фотосинтетический аппарат, ФС I –
фотосистема I, ФС II – фотосистема II, ЦЭТ – цепь элек-
тронного транспорта, ЦКБ – цикл Кальвина–Бенсона,
НЭТ – нециклический электронный транспорт, PQ – пла-
стохинон, PQH2 – пластохинол, Pc – пластоцианин, Fd –
ферредоксин, ЦЭТ – циклический электронный транс-
порт, Хл – хлорофилл, ЭПР – электронный парамагнит-
ный резонанс, ДКС – дальний красный свет, БС – белый
свет, КС – красный свет. 
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к NADP+. Пластохинон (PQ), который восста-
навливается до пластохинола (PQH2) и протони-
руется за счет ионов водорода, поступающих из
стромы (PQ + 2e− + 2H+

out → PQH2), служит мо-
бильным переносчиком электронов от ФС II к
цитохромному комплексу b6 f. От b6 f-комплекса
электроны переносятся с помощью пластоциани-
на (Pc) к Р700

+  − окисленным фотореакционным
центрам ФС I. 

На уровне ферредоксина (Fd) – мобильного
белкового переносчика электрона, восстанавли-
ваемого от ФС I, происходит разветвление элек-
тронных потоков. От восстановленного ферре-
доксина (Fd−) электроны переносятся на молеку-
лу NADP+ через ферредоксин-NADP-редуктазу;
дважды восстановленная молекула NADP− про-
тонируется за счет ионов водорода, поступающих
из стромы (NADP− + H+

out → NADPН).  Светоин-
дуцированное защелачивание стромы (pHout↑)
способствует активации ферментов ЦКБ и уско-
рению потребления NADPН и АТФ [1]. 

Альтернативные пути оттока электронов от
ФС I связаны с (1) циклическим электронным

транспортом (ЦЭТ) вокруг ФС I, и (2) «псевдо-
циклическим» транспортом электронов, проис-
ходящим с участием молекулярного кислорода
(О2) в качестве акцептора электрона в ФС I (так
называемый цикл «вода−вода»). При функциони-
ровании ЦЭТ электроны поступают в пластохи-
ноновый пул (PQ/PQH2) от Fd− по двум возмож-
ным путям: (a) через ферредоксин-хинон редук-
тазу, содержащую связанные с комплексом b6 f
белки PGR5 и PGRL1, или (б) через комплекс
NDH-1 (аналог митохондриального комплекса I
[4, 5]). В цикле «вода–вода» молекула воды, раз-
лагаемая в ФС II, − исходный источник электро-
нов; молекула воды, образующаяся на акцептор-
ной стороне ФС I после переноса электронов на
молекулярный кислород, − конечный продукт в
цепи псевдоциклического электронного перено-
са [6]:

Н2О → ФС II → PQH2 → b6 f → Рс → 
→ ФС I → О2 → Н2О.

Циклический и псевдоциклический перенос
электронов не связаны с потреблением NADPH
в ЦКБ; при этом, однако, в люмен переносятся

Рис. 1. Схема, иллюстрирующая электронные и протонные потоки в хлоропластах. Обозначения: ФС I и ФС II –
фотосистема I и фотосистема I; b6 f – цитохромный комплекс; Fd – ферредоксин; FNR – ферредоксин-NADP-
редуктаза; FQR и NDH1 – белковые комплексы, участвующие в циклическом транспорте электронов вокруг ФС I;
Pc – пластоцианин; PQ и PQH2 – пластохинон и пластохинол; PQA и PQB – молекулы первичного и вторичного
пластохинона, взаимодействующие с ФС II; PTOX – терминальная оксидаза; ЦКБ – цикл Кальвина−Бенсона.
Пунктирными стрелками показаны потоки электронов от внешних доноров к фотосинтетической цепи электронного
переноса на уровне пластохинонового пула (PQ/PQH2) и отток электронов от PQH2 к О2, катализируемый
терминальной оксидазой PTOX. 
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ионы водорода, что способствует работе АТФ-
синтазы и образованию АТФ [7]. 

Свойства ФСА зависят от вида растений и
условий их произрастания. Акклимация1 расте-
ний к определенным условиям освещения
(интенсивность и спектральный состав света) вы-
зывает перестраивание тилакоидных мембран и
оптимизацию электронного транспорта. Аккли-
мация позволяет повышать светосбор при слабой
освещенности и защищать растения от стресса
при избытке света [8−12]. Оптимизация работы
ФСА обеспечивается за счет разных механизмов
регуляции фотосинтетических процессов. Быст-
рые (секунды−минуты) механизмы регуляции
связаны с активацией белков ФСА, с перераспре-
делением энергии поглощаемого света между
двумя фотосистемами (ФС I и ФС II) [11], а также
с влиянием рН люмена (рНin) на активность
ФС II [12] и скорость переноса электронов между
фотосистемами [13]. Светоиндуцированное за-
кисление люмена (рНin↓) подавляет активность
ФС II и замедляет перенос электронов между
ФС II и ФС I. При защелачивании стромы
(рНout↑) активируются ферредоксин-NADP-ре-
дуктаза и ферменты ЦКБ, что обеспечивает уско-
рение оттока электронов от ФС I [14]. Кроме это-
го, хлоропласты могут изменять свое расположе-
ние в клетке, приближаясь к ее адаксиальной
(верхней) поверхности для более эффективного
поглощения света, или удаляясь в глубину, избе-
гая повреждений ФСА при избытке света [15].
Медленные механизмы регуляции (часы–сутки)
связаны с изменениями экспрессии белков и све-
тособирающих пигментов ФСА [16−22]. 

В контексте задачи о выяснении механизмов
регуляции световых стадий фотосинтеза пред-
ставляет интерес сравнительный анализ элек-
тронного транспорта в листьях родственных ви-
дов растений, произрастающих в географических
зонах с низкой (умеренной) или высокой осве-
щенностью. В настоящей работе описаны резуль-
таты исследования фотосинтетического переноса

 1 Термин «акклимация» означает выращивание растений в
определенных условиях (например, при высокой или низ-
кой интенсивности освещения). Говоря о растениях, выра-
щенных при определенном освещении, мы используем
термин «акклимация» растений к сильному (high light, HL)
или слабому (low light, LL) свету. Термин «акклимация» не
следует путать с термином «адаптация», означающим, что
непосредственно перед измерениями фотосинтетических
показателей листьев мы стандартизировали состояние об-
разца, выдерживая («адаптируя»), например, образец в
темноте непосредственно перед началом измерения.  Рас-
тения одного рода могут иметь сходные свойства, приобре-
тенные ими в ходе биологической эволюции. Сравнение
видов одного рода позволяет выявить различия, проявля-
ющиеся при акклимации растений. Термин «индукцион-
ные процессы» относится к кинетике фотосинтетических
процессов в листьях растений, адаптированных к опреде-
ленным условиям перед началом измерений [1].

электронов в хлоропластах in situ (в листьях) тене-
выносливого и светолюбивого видов растений
рода Cucumis – C. sativus (огурец) и C. melo (дыня).
Изучены фотоиндуцированные превращения ре-
акционного центра ФС I (Р700) и флуоресценция
хлорофилла (Хл) а в листьях растений, выращен-
ных при высокой или низкой интенсивности све-
та. Показано, что у изученных нами растений
выявляются как внутриродовые сходства, так и
межвидовые различия, проявляющиеся при ис-
следовании кинетики фотоиндуцированных ре-
докс-превращений Р700.

МАТЕРИАЛЫ И МЕТОДЫ
Растения. Объектами исследования служили

3−4-недельные листья двух видов растений рода
Cucumis (C. sativus, огурец, и C. melo, дыня), выра-
щенных из коммерчески доступных семян [23].
Длительность светового периода в дневное время
составляла 12 ч. Потоки света составляли 800–
1000 мкмоль фотонов · м−2 · с−1 (сильный свет,
обозначается как HL, high light) или 50–
125 мкмоль фотонов · м−2 · с−1 (слабый свет, обо-
значается как LL, low light). Источником
света служила светодиодная лампа УСС-90 Ма-
гистраль Ш (ООО «ТД ФОКУС», Россия), уком-
плектованная светодиодами с цветовой темпера-
турой 5000 К. Образец (второй или третий зрелый
лист в верхней части побега) освещали с дорзаль-
ной стороны листа, обращенной в сторону верх-
него эпидермиса. Ниже в качестве характерных
приведены типичные результаты исследований,
выполненных осенью 2020–2021 гг. и весной
2022 г. 

Электронный парамагнитный резонанс. По ве-
личине характерного сигнала электронного пара-
магнитного резонанса (ЭПР) от окисленных цен-
тров P700

+  следили за функционированием ЦЭТ
хлоропластов в клетках растений in situ [24]. Об-
разец (кусочек листа размером 4 × 25 мм) поме-
щали в хорошо вентилируемый держатель, кото-
рый закрепляли в прямоугольном резонаторе
ЭПР-спектрометра модели Е-4 (Varian, США).
Условия освещения образцов и регистрации сиг-
нала ЭПР от P700

+  были описаны ранее [23−25].
Мощность микроволнового излучения составля-
ла 10 мВт, амплитуда ВЧ-модуляции была равна
0.4 мТл. За редокс-превращениями P700 следили
по величине низкополевого экстремума первой
производной сигнала ЭПР от P700

+  [24]. Для пре-
имущественного возбуждения ФС I использова-
ли дальний красный свет (ДКС, λмакс = 707 нм,
Δλ1/2 = 5 нм) интенсивностью 8 Вт · м−2. Для эф-
фективного возбуждения ФС I и ФС II,
образцы освещали белым светом (БС, 320 Вт · м−2)
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или красным светом (КС, λмакс = 650 нм,
Δλ1/2 = 10 нм). Для выделения полос ДКС или КС
из спектрального диапазона БС, создаваемого
лампой накаливания мощностью 100 Вт, исполь-
зовали интерференционные фильтры фирмы Carl
Zeiss Jena (Германия). В качестве теплового филь-
тра, препятствующего нагреванию образцов за
счет действия интенсивного БС, применяли вод-
ный фильтр, поглощающий инфракрасный свет
(толщина слоя воды составляла 5 см [24, 25]). 

Оптические измерения редокс-превращений
Р700. Наряду с техникой спектроскопии ЭПР для
регистрации редокс-превращений P700 мы ис-
пользовали спектрометр DUAL-PAM-100 (Walz,
Германия), который позволяет диагностировать
состояние P700 и одновременно регистрировать
индукцию флуоресценции Хл а [26]. Об окисле-
нии P700 судили по фотоиндуцированному увели-
чению сигнала A870–830, измеряемого по разности
поглощения света при 870 и 830 нм. В качестве
действующего («актиничного») света, возбужда-
ющего обе фотосистемы (ФС I и ФС II), исполь-
зовали красный свет, создаваемый фотодиодом
(λмакс = 635 нм, световой поток ≈1000 мкмоль фо-
тонов · м−2 · с−1). Для преимущественного воз-
буждения ФС I и определения максимального
уровня оптического сигнала от P700

+  использова-
ли свет, испускаемый фотодиодом с λмакс = 720

нм (световой поток ~~500  мкмоль фотонов · м−2 ·
с−1). Интенсивность измерительного инфракрас-
ного света (λ = 870 и 830 нм) составляла
≈9 мкмоль  фотонов · м −2 · с−1.  Потоки  КС, ДКС 
и измерительного света, создаваемые светодио-
дами  спектрометра  DUAL-PAM-100,  соответ-
ствуют интенсивностям света, равным ≈190, 82 
и 2 Вт·м−2 соответственно. 

Кинетика медленной индукции флуоресценции
Хл а. Кинетику фотоиндуцированных изменений
выхода флуоресценции Хл а измеряли методом,
описанным в работах [22, 23, 25, 26].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 
Кинетика фотоиндуцированных превращений

Р700 (измерения методом ЭПР). На рис. 2 показа-
ны типичные кинетические кривые фотоиндуци-
рованного окисления Р700 в адаптированных к
темноте листьях растений C. sativus (рис. 2а) и
C. melo (рис. 2б), выращенных при низкой (LL)
или высокой (HL) интенсивности света. Эти кри-
вые заметно различаются в зависимости от вида и
условий выращивания растений. 

В листьях огурца (C. sativus) в ответ на включе-
ние белого света, возбуждающего обе фотосисте-
мы, после быстрого первоначального скачка сиг-
нала ЭПР от P700

+  (фаза А0) наблюдается замедле-

Рис. 2. Типичные кинетики фотоиндуцированных изменений величины сигнала ЭПР от Р700
+ в листьях LL- и HL-

растений C. sativus (а) и C. melo (б), выращенных при низкой (LL) или высокой (HL) интенсивности света,
адаптированных в течение 10 мин к темноте. Сокращенные обозначения света различного спектрального состава и
стадий роста сигнала ЭПР: отмеченные символами A0−A1−A2 стадии относятся к изменениям сигнала ЭПР при
действии белого света (БС); стрелками, показанными рядом с символами ДКС и КС (λмакс = 650 нм), отмечены
моменты переключения и выключения света. Все кривые нормированы на амплитуду В максимального сигнала ЭПР
от Р700

+ , индуцируемого дальним красным светом (ДКС, λмакс = 707 нм), возбуждающим преимущественно ФС I.

 W
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ние фотоокисления Р700. У НL-растений эта
стадия характеризуется двумя фазами, обозна-
ченными символами А1 и А2. У LL-растений фаза
А1 не видна, она сливается со стадией А2. Скоро-
сти достижения стационарной концентрации
P700

+  у LL- и HL-растений отличаются незначи-
тельно; при этом, однако, различаются стацио-
нарные уровни сигналов ЭПР. Разные величины
сигналов отражают, вероятно, влияние условий
акклимации на относительный вклад ЦЭТ:
уменьшение стационарного уровня P700

+  у HL-
растений может происходить вследствие усиле-
ния притока электронов к P700

+  за счет их возвра-
та в пластохиноновый пул от акцепторов ФС I за
счет ЦЭТ.

После переключения БС на дальний красный
свет (λмакс = 707 нм), возбуждающий преимуще-
ственно ФС I, окисленные центры P700

+  сначала
быстро восстанавливаются (τ1/2 ~ 5−20 мс) за счет
электронов, поступающих к P700

+  от молекул
PQH2. Затем, после истощения пула восстанов-
ленных молекул PQH2, происходит ре-окисление
Р700 и устанавливается новый стационарный уро-
вень сигнала ЭПР. Это происходит потому, что
при действии ДКС сильно ослаблен приток элек-
тронов от ФС II, но продолжают активно сраба-
тывать центры Р700. Параметр кинетической кри-
вой, обозначенный на рис. 2а символом W (пло-
щадь над кривой переходного процесса после
хроматического перехода БС → ДКС), пропорци-
онален числу восстановленных переносчиков в
ЭТЦ между ФС II и ФС I в момент переключения
БС на ДКС [25]. Исходя из этого, можно опреде-
лить относительную емкость пула восстановлен-
ных доноров электронов (параметр W) в момент
времени, предшествующий хроматическому пе-
реходу БС → ДКС. Методика определения W по-
дробно описана в работе [25]. 

Переключение ДКС на относительно слабый
красный свет (λмакс = 650 нм), возбуждающий обе
фотосистемы, приводит к заметному спаду сигна-
ла на величину ΔB вследствие притока электро-
нов к P700

+  от ФС II. Интенсивность КС намного
меньше интенсивности БС, частота срабатыва-
ния центров Р700 на слабом КС ниже, чем при
действии интенсивного БС. При действии КС по-
ток электронов через ФС I ослабевает, поэтому
значительно уменьшается амплитуда сигнала
ЭПР от Р700

+ .

В листьях дыни (C. melo) кинетики фотоинду-
цированных изменений сигнала ЭПР от P700

+  в
листьях LL- и HL-растений заметно различают-

ся. Основное различие касается скорости роста
сигнала ЭПР на стадии А2: у HL-растений эта фа-
за замедлена, а площадь S увеличена по сравне-
нию с тем, что наблюдается у LL-растений.
Мы полагаем, что одна из причин замедления ро-
ста сигнала у HL-растений и увеличения пара-
метра W − возрастание вклада ЦЭТ, при котором
электроны от акцепторов ФС I возвращаются в
пластохиноновый пул и затем попадают к P700

+  ,
тем самым замедляя нарастание сигнала ЭПР от
Р700

+. Это предположение согласуется с тем, что в
хлоропластах арабидопсиса, акклимированных к
сильному свету, возрастает относительное содер-
жание комплексов b6 f [27, 28]. 

Фотоокисление Р700 и индукция флуоресценции
Хл а. Описанные выше особенности кинетики
фотоокисления Р700 в листьях LL- и HL-растений
отражают структурно-функциональные различия
ФСА у этих растений. Для выяснения механиз-
мов, ответственных за многофазную кинетику ре-
докс-превращений Р700, интересно было срав-
нить кинетики фотоиндуцированного окисления
Р700 и медленной индукции флуоресценции Хл а.
Такие измерения были выполнены с помощью
спектрометра DUAL-PAM-100, позволяющего
одновременно следить за состоянием Р700 по по-
глощению света (параметр А870−830) и регистри-
ровать выход флуоресценции Хл а. Общеизвест-
но, что при комнатных температурах основной
вклад во флуоресценцию листьев вносит свече-
ние, испускаемое пигментными комплексами
ФС II [29−32]. На рис. 3а показаны типичные ки-
нетические кривые фотоиндуцированных изме-
нений оптического параметра А875−830 и перемен-
ной составляющей флуоресценции Хл (FV(t)), по-
лученные на HL-листьях C. sativus при одном и
том же протоколе освещения. Интенсивность пе-
ременной флуоресценции FV(t) определяли как
FV(t) = F(t) − F0, где F0 − начальный уровень флу-
оресценции Хл а до включения интенсивного ак-
тиничного света. На рис. 3б показана кривая мед-
ленной индукции флуоресценции в HL-листьях
C. sativus, адаптированных в течение 10 мин к тем-
ноте. После включения непрерывного актинич-
ного света (λмакс = 635 нм) интенсивность флуо-
ресценции F(t) сначала быстро (≤0.5 с) возрастает
от исходного уровня F0 (измеряемого до включе-
ния интенсивного актиничного света) до макси-
мального уровня Fmax, а затем сравнительно мед-
ленно спадает к стационарному уровню FT. Такая
немонотонная кривая характерна для интактных
листьев растений, адаптированных к темноте
(эффект Каутского [29−32]). 

Кинетика изменений А870–830 (рис. 3а), реги-
стрируемая при действии непрерывного красного
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света, согласуется с кинетикой многофазных из-
менений сигнала ЭПР от P700

+  при действии
непрерывного БС (рис. 2). На кинетической
кривой, полученной для оптического сигнала
А870−830, видны сравнительно быстрые начальные
фазы роста сигнала, которые затем сменяются бо-
лее медленным ростом А870−830. 

Отметим важное обстоятельство, свидетель-
ствующее об адекватности используемого нами
параметра А870−830 для измерения редокс-состоя-
ния Р700. Как мы отмечали ранее [33], нельзя ис-
ключить того, что в величину сигнала А870−830
кроме Р700 могли бы вносить определенный вклад
редокс-превращения других переносчиков (на-
пример, ферредоксина и/или пластоцианина, см.
подробнее работу [34]). Измерения концентра-
ции P700

+  методом ЭПР свободны от этого недо-
статка: ферредоксин и пластоцианин при ком-
натных температурах не дают сигналов ЭПР, ко-
торые могли бы искажать динамику

изменений P700
+  [24]. Сравнивая кривые фото-

окисления Р700 двумя разными методами, следует
обратить внимание на сходство кривых фото-
окисления Р700, полученных методом ЭПР
(рис. 2) и оптическим методом (рис. 3а). Заметим,
что ранее на листьях Hibiscus rosa-sinensis [25] бы-
ло показано, что измеренные методом ЭПР кине-
тики редокс-превращений Р700, индуцированных
действием БС или КС близкой интенсивности,
имеют общие закономерности. Таким образом,
сравнение данных, полученных разными метода-
ми, позволяет заключить, что изменения пара-
метра А870−830, измеренные с помощью спектро-
метра DUAL-PAM-100, верно отражают законо-
мерности кинетики редокс-превращений Р700,
измеренных методом ЭПР. Преимуществом оп-
тического метода является то, что он позволяет
регистрировать быстрые изменения концентра-
ции P700

+  (≥0.1 мс), что затруднено при использо-

Рис. 3. (а) − Нормированные кинетики фотоиндуцированных изменений разностного сигнала А870−830, пропорцио-
нального относительной концентрации Р700

+, и интенсивности переменной составляющей медленной индукции
флуоресценции Хл а (переменная FV(t)) в HL-листьях C. sativus, адаптированных 10 мин к темноте. Вертикальными
стрелками показаны моменты включения и выключения непрерывного красного света (КС, λмакс = 635 нм). В правой
части рисунка видно увеличение сигнала А870−830 после включения дальнего красного света (ДКС, λмакс = 720 нм).
(б) − Кинетика фотоиндуцированных изменений интенсивности флуоресценции Хл а (переменная F(t)) в HL-листьях
C. sativus, адаптированных 10 мин к темноте. 
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вании традиционной техники ЭПР-спектроско-
пии.

Сравнение кривых фотоокисления Р700
 и 

переменной составляющей кривой медленной 
индукции флуоресценции Хл а показывает 
(рис. 3а), что начальные стадии изменения редокс-
состояния Р700

 совпадают по времени со 
значительным уменьшением интенсивности 
флуоресценции. Мы полагаем, что основные 
причины многофазной кинетики фотоокисления
Р700 и спада интенсивности флуоресценции свя-
заны с ослаблением фотохимической активности
ФС II и с ускорением оттока электронов от ФС I.
Уменьшение интенсивности флуоресценции во
время действия достаточно сильного непрерыв-
ного света может происходить: 1) вследствие уси-
ления нефотохимического тушения флуоресцен-
ции в ФС II, 2) из-за перераспределения
энергии света, поглощаемого светособирающи-
ми антеннами обеих фотосистем, в пользу ФС I,
3) за счет ре-окисления акцепторов электрона в
ФС II (PQA и PQB) и пластохинонового пула
(PQH2/PQ), обусловленного ускорением оттока
электронов от ФС I в результате активации ЦКБ
[29−33]. Нельзя исключить, что уменьшению вы-
хода флуоресценции может также способствовать
перемещение хлоропластов внутри клетки [15]. 

После выключения красного актиничного
света наблюдается немонотонный переходной
процесс возврата интенсивности флуоресценции
к уровню, совпадающему с исходным уровнем F0
в темноте. Имеются основания считать, что ха-
рактерный «перехлест», регистрируемый в темно-
те (параметр ΔF, см. врезку на рис. 3б), отражает
спад транс-тилакоидной разности рН (ΔpH) в
темноте после выключения света (см. обоснова-
ние в работе [26], в которой показано, что ин-
фильтрация в лист протонофора нигерицина по-
давляет «перехлест» ΔF). Адаптация растений к
темноте (или к слабому измерительному свету)
после выключения актиничного света сопровож-
дается диссипацией ΔpH, о чем свидетельствует
увеличение интенсивности флуоресценции, ха-
рактеризуемое параметром ΔF.  

Восстановление P700
+  в темноте. После выклю-

чения непрерывного КС сигнал А870−830 быстро
спадает (рис. 3а). Падение сигнала А870−830 отра-
жает восстановление окисленных центров P700

+

за счет доноров электрона, поступающих из пула
восстановленных молекул PQH2 (через цито-
хромный комплекс b6 f и пластоцианин:
PQH2 → b6 f → Pc → P700

+ ). Кинетика спада сигнала
А870−830 после выключения света имеет экспонен-
циальный характер, она может быть охарактери-

зована временем полувосстановления P700
+  (па-

раметр t1/2) [26, 36]. Скорость окисления PQH2
цитохромным комплексом b6 f, как известно (см.
подробнее [35, 36]), замедляется при закислении
люмена (pHin↓). Окисление молекулы PQH2 до
PQ сопряжено с выделением двух протонов в лю-
мен (PQH2 → PQ + 2H+

in), увеличение концен-
трации ионов водорода внутри люмена замедляет
окисление PQH2. Поэтому по скорости восста-
новления P700

+  после выключения актиничного
света можно судить о величине pHin [35, 36]. 

Зависимости кинетического параметра τ1/2 от
длительности действия красного актиничного
света, измеренные для двух видов растений рода
Cucumis, акклимированных к сильному (HL) или
слабому (LL) свету, показаны на рис. 4. Видно,
что во всех случаях, после кратковременной экс-
позиции листьев к красному свету, возбуждаю-
щему обе фотосистемы, значения τ1/2 близки к
≈5 мс. Это время включает в себя время образова-
ния PQH2 в ФС II и диффузии PQH2 к цитохром-
ному комплексу b6 f, а также характерное время
реакции окисления PQH2, когда еще не произо-
шло значительного уменьшения pHin. Замедле-
ние восстановления P700

+  наступает при pHin ≤ 7,
когда тормозится окисление PQH2 цитохромным
комплексом [35]. Ранее нами было показано, что
в хлоропластах некоторых видов растений (бобы
Vicia faba, Hibiscus rosa-sinensis, Tradescantia), па-
раметр τ1/2 монотонно возрастал с увеличением
длительности освещения [26, 33, 35, 36]. Напри-
мер, в листьях традесканции после достаточно
длительной экспозиции к интенсивному красно-
му свету (~ 2−8 мин), значение параметра τ1/2 уве-
личивалось до ≈25−35 мс, что соответствует
уменьшению рН люмена до pHin ~ 6.2 [26, 33]. 

В отличие от упомянутых выше монотонных
зависимостей параметра τ1/2 от длительности све-
товой экспозиции, для листьев C. sativus (рис. 4а)
и C. melo (рис. 4б) мы наблюдали немонотонные
зависимости τ1/2 от длительности освещения. В
первое время после начала освещения (~1−2 мин)
происходило увеличение t1/2 до ~15−20 мс, отра-
жающее замедление окисления PQH2 цитохром-
ным комплексом в результате светоиндуцирован-
ного закисления люмена. Однако по мере увели-
чения продолжительности световой экспозиции,
скорость восстановления Р700

+ в темноте после
выключения актиничного света возрастала:
после достаточно длительного освещения ли-
стьев (≥2−4 мин) параметр τ1/2 уменьшался. При
этом в листьях HL- и LL-растений теневыносли-
вого вида C. sativus (огурец) зависимости τ1/2 от
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длительности освещения различались: у LL-рас-
тений уменьшение τ1/2 было выражено сильнее,
чем у HL-растений. В листьях C. melo (дыня) па-
раметр t1/2 уменьшался до ≈10 мс, однако разли-
чий между зависимостями для HL- и LL-расте-
ний мы не наблюдали. Эти свидетельствует о том,
что свойства ФСА листьев светолюбивого вида
C. melo, оцениваемые по значениям τ1/2, мало
чувствительны к усилению интенсивности света
при выращивании растений. 

Одной из причин спада параметра τ1/2 в зави-
симостях, показанных на рис. 4, может быть све-
тоиндуцированная активация ферментов, ката-
лизирующих работу ЦКБ и синтез АТФ. В резуль-
тате ускорения процессов, происходящих в ЦКБ,
возрастает потребление АТФ и NADPH. За счет
ускорения работы АТФ-синтаз может незначи-
тельно снижаться транс-тилакоидная разность
рН (ΔpH = рНout − рНin), используемая в качестве
источника энергии для работы АТФ-синтазы.
В результате ускорения выхода протонов из лю-
мена в строму через активно работающие АТФ-
синтазы значение рНin повышается [13], потому,
как мы полагаем, возрастает поток электронов в
цепи НЭТ и ускоряется приток протонов в лю-
мен, поддерживая интенсивный оборот АТФ-
синтазных комплексов. Такая цепь событий,
инициированных активацией ЦКБ, позволяет
объяснить ускорение НЭТ, что отражается в
уменьшении рН-зависимого параметра τ1/2 при
достаточно длительном действии актиничного
света (рис. 4). Упомянутые выше процессы регу-
ляции электронного транспорта в хлоропластах
обычно называются явлением «фотосинтетиче-

ского контроля» [13, 36], они адекватно описыва-
ются в рамках нашей математической модели рН-
зависимой регуляции световых стадий фотосин-
теза (см., например, «Приложение» в нашей ра-
боте [25]). 

Другая возможная причина спада τ1/2 по мере
освещения листьев рода Cucumis – структурная
реорганизация ламеллярной системы хлоропла-
стов. Например, в работах [37−39] было показано,
что при освещении хлоропластов арабидопсиса,
адаптированных к темноте, увеличивается про-
свет люмена и уменьшается диаметр гран. Благо-
даря этому облегчается латеральная диффузия
пластоцианина внутри тилакоидов и может уско-
ряться перенос электронов от комплексов ФС II,
находящихся преимущественно в мембранах
гран, к цитохромным комплексам b6 f, локализо-
ванным в межгранных тилакоидах. 

Рассмотренные выше механизмы регуляции
электронного транспорта проявляются также в
том, что во время освещения адаптированных к
темноте листьев немонотонно изменяется число
восстановленных переносчиков электрона (пара-
метр W) в цепи между двумя фотосистемами. Ос-
новной вклад в величину W вносят восстановлен-
ные молекулы пластохинонового пула (PQH2)
[22, 25, 40]. Использованная в настоящей работе
методика определения числа восстановленных
переносчиков цепи между фотосистемами осно-
вана на измерении кинетики редокс-превраще-
ний Р700 после хроматического перехода БС (или
КС, возбуждающий обе фотосистемы) → ДКС
(дальний красный свет, возбуждающий преиму-
щественно ФС I). Суть этого подхода заключает-

Рис. 4. Зависимость параметра τ1/2 в листьях C. sativus (а) и C. melo (б) от продолжительности действия красного
актиничного света (КС, λмакс = 635 нм). Величина τ1/2 − время восстановления в темноте 50% центров Р700

+ после
выключения КС. Перед началом измерений образцы для стандартизации освещали красным светом (2 мин). Затем
образцы 10 мин адаптировали к темноте, после чего включали КС и по кинетике спада Р700

+  измеряли τ1/2 в
зависимости от длительности действия КС. Показаны средние значения параметра τ1/2 (n = 4) и их
среднеквадратичные отклонения. 
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ся в том, что площадь заштрихованного участка
над кинетической кривой (рис. 2, площадь W)
пропорциональна количеству электронов W, по-
ступающих к ФС I от восстановленных перенос-
чиков ЭТЦ между фотосистемами во время дей-
ствия ДКС. Детали того, как по площади S можно
вычислить число электронных эквивалентов W в
расчете на один центр Р700, подробно описаны в 
нашей работе [25]. 

На рис. 5 показано, как изменяется параметр
W в ходе освещения непрерывным белым светом
листьев двух видов рода Cucumis, адаптированных
к темноте перед началом измерений. Общая зако-
номерность изменений W такова: в ответ на
включение БС параметр W увеличивается до
W ≈ 10 (до начала освещения значение W было
равно W ≈ 2), а затем, приблизительно через 15 с
после начала освещения, W уменьшается. Харак-
терные времена спада W во время освещения со-
ставляли: τ1/2 ≈ 15 c в листьях C. sativus и τ1/2 ≈ 30 c
в листьях C. melo. Очевидно, что падение W во
время действия непрерывного БС вызвано двумя
факторами: 1) ослаблением активности ФС II
(уменьшается приток электронов от ФС II к PQ)
и 2) ускорением оттока электронов в ЦКБ от ФС
I, способствующим реокислению PQH2. 

Перераспределение электронных потоков
между НЭТ и ЦЭТ – другой фактор, который мо-
жет влиять на динамику изменений W в ходе
освещения листьев, адаптированных к темноте.
Считается, что на начальном этапе освещения,
когда поток электронов в ЦКБ ограничен, вклад

ЦЭТ в отток электронов от ФС I увеличен [41−
43]. Функциональный смысл этого явления поня-
тен − ЦЭТ позволяет избежать накопления избы-
точного числа восстановленных переносчиков
на акцепторном участке ФС I, когда отток элек-
тронов от ФС I ограничен из-за низкой актив-
ности ферредоксин-NADP-редуктазы и фермен-
тов ЦКБ. При этом ЦЭТ поддерживает транс-ти-
лакоидный перенос протонов, что обеспечивает
синтез молекул АТФ, необходимых для функцио-
нирования ЦКБ [7]. По мере светоиндуцирован-
ной активации ЦКБ отток электронов от ФС I в
ЦКБ ускоряется (характерное время этого про-
цесса составляет ~1−2 мин [1]). При этом соответ-
ственно ускоряется реокисление PQH2 за счет бо-
лее частого срабатывания реакционных центров
ФС I, что отражается в уменьшении величины W.
К сожалению, точность определения W недоста-
точно высока, чтобы мы могли с уверенностью
судить о влиянии условий акклимации на ход
временных зависимостей W(t) для каждого из
изученных нами видов растений.

После выключения света параметр W умень-
шается. Очевидно, что это происходит за счет
функционирования терминальной оксидазы
PTOX, катализирующей окисление PQH2 моле-
кулярным кислородом − явление, получившее
название «хлорореспирация» (chlororespiration)
[44]. Можно заметить, что кривые спада W в тем-
ноте у LL- и HL-растений вида C. sativus различа-
ются (рис. 5а), в то время как у LL- и HL-расте-
ний вида C. melo кинетики спада W в темноте
практически совпадают (рис. 5б). Это наблюде-

Рис. 5. Зависимость параметра W в LL- и HL-листьях C. sativus (а) и C. melo (б) от продолжительности действия БС.
Параметр W характеризует относительную емкость пула восстановленных доноров электронов в ЦЭТ между
фотосистемами. Перед началом измерений образцы для стандартизации освещали красным светом (2 мин), а затем в
течение 10 мин адаптировали к темноте. Показаны средние значения параметра τ1/2 (n = 4) и их среднеквадратичные
отклонения. 
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ние коррелирует с данными о различиях времен-
ных зависимостей параметра τ1/2 у LL- и HL-рас-
тений вида C. sativus (рис. 4а) и об отсутствии по-
добных различий у C. melo (рис. 4б). 

ЗАКЛЮЧЕНИЕ

Проведенное в настоящей работе исследова-
ние фотосинтетического транспорта электронов
в хлоропластах C. sativus (огурец) и C. melo (дыня)
выявило родовые сходства этих видов, с одной
стороны, и межвидовые различия – с другой. Оба
вида растений имеют близкие морфологические
и функциональные свойства, например, похожие
формы листьев. У обоих видов растений наблю-
даются немонотонные зависимости параметра
t1/2 (рис. 4), которые отличают их от теневынос-
ливых и светолюбивых видов растений рода Trad-
escantia [25, 26, 33]. Межвидовые различия расте-
ний рода Cucumis (огурцы и дыни), проявляются в
кинетике фотоиндуцированного окисления Р700.
Различия этих видов были отмечены ранее при
сравнении свойств тилакоидных мембран (мик-
ровязкость липидного бислоя тилакоидных мем-
бран) и чувствительности ФСА листьев огурца и
дыни к повышению температуры [45, 46]. Меж-
видовые различия проявляются особенно замет-
но при варьировании условий выращивания рас-
тений. В настоящей работе показано, что в HL-
листьях вида C. melo быстрее достигается стацио-
нарная концентрация P700

+  по сравнению с HL-
растениями теневыносливого вида C. sativus
(рис. 2). При этом у HL-растений вида C. melo
четко выделяются две фазы фотоиндуцированно-
го роста Р700

+ − сравнительно быстрая начальная
и последующая более медленная стадия окисле-
ния Р700. 

Анализ особенностей кинетики фотоокисле-
ния Р700, сравнение ее с медленной индукцией
флуоресценции Хл а, описанной нами ранее [23],
а также изучение скорости восстановления P700

+

в темноте после выключения действующего све-
та, возбуждающего обе фотосистемы, свидетель-
ствуют, что наблюдаемые межвидовые различия у
изученных теневыносливых и светолюбивых рас-
тений отражают структурно-функциональные
различия их ФСА. Изучив кинетику восстановле-
ния P700

+  после выключения света, мы пришли к
заключению, что активация ЦКБ – один из ос-
новных факторов, способствующих ускорению
НЭТ по мере освещения хлоропластов (рис. 4).
При акклимации растений к свету различной ин-
тенсивности может изменяться соотношение
между относительными вкладами разных путей
переноса электронов в хлоропластах (НЭТ или
ЦЭТ). Латеральная гетерогенность тилакоидных

мембран, как известно [37−39, 47, 48], проявляет-
ся в неоднородном распределении в белковых
комплексax ФС I, ФС II и b6 f. Белковые ком-
плексы ФС II и b6 f, локализованные в мембранах
плотно упакованных тилакоидов гран, вносят
основной вклад в НЭТ (Н2О → ФС II → PQ → b6 f →
→ Pc → ФС I → Fd → ЦКБ). Комплексы ФС I и b6 f,
расположенные в межгранных тилакоидах, вклю-
чены в ЦЭТ вокруг ФС I (ФС I → Fd → PQ → b6 f →
→ Pc → ФС I). Перераспределение потоков элек-
тронов между цепями НЭТ и ЦЭТ, обусловлен-
ное варьированием свойств ФСА растений при их
акклимации к сильному или слабому свету (изме-
няется относительное содержание белковых
электрон-транспортных комплексов), может вы-
зывать структурно-функциональные изменения
хлоропластов, затрагивающие относительное со-
держание комплексов ФС I и ФС II и распределе-
ние цитохромных b6 f комплексов между мембра-
нами гранальных и межгранных тилакоидов [28,
37−39]. Полученные нами данные согласуются с
тем, что вариабельность путей переноса электро-
нов, проявляющаяся при акклимации растений к
свету различной интенсивности, может опреде-
ляться изменением баланса НЭТ и ЦЭТ: при
выращивании растений на сильном свету относи-
тельный вклад ЦЭТ возрастает. Этому, в частно-
сти, может способствовать увеличение относи-
тельного содержания цитохромных комплексов
b6 f и АТФ-синтазных комплексов, что было об-
наружено при акклимации арабидопсиса к силь-
ному свету [27, 28]. Связанное с этим ускорение
оттока электронов от ФС I позволяет избегать на-
копления избыточного количества восстановлен-
ных низкопотенциальных акцепторов ФС I, слу-
жащих донорами электронов для О2, что должно
предохранять ФСА от окислительного стресса. 
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 Regulation of Electron Transport in Chloroplasts: Induction Processes
in the Leaves of Cucumis Genus

 N.A. Marinin*, I.S. Suslichenko*, and A.N. Tikhonov*

*Lomonosov Moscow State University, Leninskie Gory 1/2, Moscow, 119991 Russia

In this work, we describe results of our study of electron transport in chloroplasts in situ (leaves) of two species
of the Cucumis genus, shade-tolerant species С. sativus (cucumber) and light-loving species С. melo (melon),
grown at high light (800–1000 μmol photons m−2 · s−1) or low light (50–125 μmol photons m−2 · s−1) condi-
tions. The light-induced processes of electron transport were monitored by using the electron paramagnetic
resonance (EPR) and optical methods (a difference signal from P700

+ ),  and the yield of chlorophyll a f luo-
rescence. It has been demonstrated that the plants grown at high light reveal high rates of P700 photooxidation
and f luorescence decrease, as compared to plants grown at low light. The data obtained are discussed in the
context of electron transport regulation mechanisms in shade-tolerant and light-loving species of the Cucumis
genus.

Keywords: chloroplasts, photosynthetic electron transport, electron paramagnetic resonance, optical spectroscopy,
acclimation to strong and moderate light




