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α-Субъединицы калиевого потенциал-зависимого канала Kv1.2, функцией которого является регу-
ляция нейронной проводимости в центральной нервной системе, образуют с α-субъединицами род-
ственных Kv1-каналов различные по составу и стехиометрии гетеротетрамеры. Для изучения гете-
ротетрамерных каналов in vitro проводят конструирование конкатемеров, соединяя последователь-
но необходимые α-субъединицы. Вопрос о способе конструирования конкатемеров, позволяющем
воспроизвести свойства нативных каналов, требует детального изучения. В работе были сконстру-
ированы меченые флуоресцентным белком mKate2 конкатемеры (димеры) α-субъединиц Kv1.2
(mKate2-Kv1.2-Kv1.2) и осуществлена их экспрессия в клетках нейробластомы мыши Neuro-2а. По-
казано, что канал Kv1.2, собранный из этих конкатемеров, по своим свойствам, таким как внутри-
клеточное распределение, способность встраиваться в плазматическую мембрану, эффективность
взаимодействия с пептидным блокатором, а также по электрофизиологическим характеристикам,
практически не отличается от канала Kv1.2 на основе мономерных α-субъединиц mKate2-Kv1.2. 
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Потенциал-зависимые калиевые каналы се-
мейства Kv1 широко распространены в централь-
ной и периферической нервной системе, где они
выполняют роль регуляторов нейронной прово-
димости [1]. Характерной особенностью боль-
шинства каналов Kv1 является их способность к
высокоаффинному взаимодействию с пептидны-
ми токсинами из животных ядов, которые явля-
ются блокаторами ионной проводимости каналов
и широко используются при изучении структуры
и функции каналов Kv1 [2]. Большая часть дан-
ных, полученных в гетерологичных системах экс-
прессии (в ооцитах лягушки или на клеточных
линиях), характеризует электрофизиологические
и лиганд-связывающие свойства гомотетрамер-
ных каналов Kv1, образованных идентичными
α-субъединицами [3, 4]. Вместе с тем известно,
что in vivo каналы Kv1 могут являться гетеротетра-
мерами, содержащими в своем составе α-субъ-
единицы Kv1 различных типов. Способность к ге-
теротетрамеризации, характерная для представи-

телей семейства каналов Kv1, основана на
гомологии N-концевого тетрамеризующего
домена этих каналов. При этом в нейронах реали-
зуются лишь определенные комбинации гетеро-
тетрамерных каналов [5, 6]. Функциональное
значение гетеротетрамеризации заключается в
увеличении разнообразия регуляторных функций
каналов Kv1 [7]. Кроме того, гетеротетрамериза-
ция оказывает модулирующее действие на актив-
ность каналов Kv1 на уровне регуляции клеточно-
го транспорта и встраивания в мембрану каналов,
содержащих определенные α-субъединицы.
Так, α-субъединица Kv1.1 является «молчащей», а
ее встраивание в мембрану опосредуется гетеро-
тетрамеризацией с α-субъединицами Kv1.2 или
Kv1.4 [8]. 

Каналы, содержащие α-субъединицы Kv1.2,
участвуют в проведении нервных импульсов в ак-
сонах и секреции нейромедиаторов. Они локали-
зуются в строго определенных участках аксона (в
начальном сегменте аксона, вблизи перехватов
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Ранвье, в синаптических мембранах) и представ-
лены там гетеротетрамерами Kv1.2/Kv1.1 [6, 9].
Именно гетеротетрамеры Kv1.1/1.2 наиболее рас-
пространены в центральной нервной системе [6]. 

Для систематического изучения гетеротетра-
мерных каналов необходимо контролировать сте-
хиометрию α-субъединиц в канале. Это трудно-
достижимо при со-экспрессии комбинаций от-
дельных α-субъединиц в клетках [10]. Поэтому
для исследования гетеротетрамерных каналов
предложено использовать конкатемерные кон-
струкции с заданным числом и порядком кова-
лентно связанных между собой α-субъединиц
[11]. Известны два биоинженерных способа кон-
струирования конкатемеров, отличающиеся по
структуре линкеров между соседними α-субъеди-
ницами. В конструкциях, используемых для экс-
прессии гетеротетрамеров в ооцитах лягушки, в
качестве линкера использовали протяженную по-
следовательность β-глобина Xenopus [12]. α-Субъ-
единицы Kv1.3 объединяли в димеры дипептидом
Lys-Leu, соответствующим последовательности
сайта узнавания рестриктазы HindIII, по которо-
му проводилось клонирование [12]. 

С целью изучения применимости второго спо-
соба для формирования и изучения в клетках ге-
теротетрамерных каналов Kv1.2/Kv1.х (где х = 1, 4,
5, 6) со стехиометрией 2 : 2 нами создан гомоди-
мер из α-субъединиц Kv1.2, соединенных линке-
ром Lys-Leu. Следуя разработанному нами ранее
подходу к изучению Kv1-каналов в клетках мле-
копитающих [13–15], конкатемеры Kv1.2−Kv1.2
были слиты по N-концу с красным флуоресциру-
ющим белком mKate2. Проведено сравнительное
исследование свойств гомотетрамерных каналов
Kv1.2, образованных мономерными α-субъеди-
ницами mKate2-Kv1.2 (K-Kv1.2) и димерами
mKate2-Kv1.2-Kv1.2 (К-Kv1.2-Kv1.2). Изучены
клеточное распределение, способность к связы-
ванию с пептидным блокатором и электрофизио-
логические характеристики обоих типов каналов.

МАТЕРИАЛЫ И МЕТОДЫ

Хонготоксин 1 (HgTx1) получали по методике,
описанной ранее [16]. HgTx1, меченный по С-кон-
цу флуоресцентным белком еGFP (HgTx−GFP),
получали, как описано ранее [15]. 

В работе использовали плазмиду pmKate2-
KCNA2, кодирующую α-субъединицу Kv1.2 чело-
века, слитую на N-конце с красным флуорес-
центным белком mKate2 (K-Kv1.2) [15]. α-Субъ-
единица Kv1.2 содержала мутацию S371T, способ-
ствующую выносу канала Kv1.2 на мембрану
клетки [17]. Для получения конкатемера K-Kv1.2-
Kv1.2 сначала была получена плазмида pmKate2-
KCNA2stopless путем амплификации в реакции

ПЦР гена KCNA2, не содержащего стоп-кодона
TAA, с помощью пары олигонуклеотидных прай-
меров Kcna2-f1 5′-TTCTCAGATCTATGACAGT-
GGCCACCGGAGACCCA-3′ и Kcna2-Stop-r1
5'-CTTCAAGCTTGACATCAGTTAACATTTTGG-
TA (подчеркнуты сайты узнавания рестриктаз
BglII и HindIII). Полученный фрагмент ДНК гид-
ролизовали рестриктазами BglII/HindIII и кло-
нировали по соответствующим сайтам в плазмиду
pmKate2-KCNA2, замещая ген KCNA2 геном
KCNA2stopless. Далее проводили амплификацию
гена KCNA2 с помощью праймеров Kcna2-Hind-f1
5'-CT-TCAAGCTTACAGTGGCCACCGGAGAC-
CCAGCAGA-3' и Kcna2-Sal-r1 5'-TTCGTCGAC-
TCTCCTGCAGTTA-GACATCAGTTAACATTTTG-
GTAATATTC-3' (сайты узнавания рестриктаз Hin-
dIII, SalGI и PstI подчеркнуты; стоп-кодон TAA вы-
делен жирным шрифтом) и полученный фрагмент
ДНК клонировали по сайтам HindIII/SalI плазми-
ды pmKate2-KCNA2stopless. Полученная плазми-
да pmKate2-KCNA2-KCNA2 кодировала флуо-
ресцентно-меченый димерный белок K-Kv1.2-
Kv1.2, в котором α-субъединицы Kv1.2 объедине-
ны линкером Lys-Leu. Структуру полученной
плазмиды подтверждали секвенированием фраг-
ментов ДНК, полученных при гидролизе плазми-
ды рестриктазами BamHI/HindIII и HindIII/Sal-
GI («Евроген», Москва, Россия).

Клетки нейробластомы мыши Neuro-2a выра-
щивали в среде DMEM/F12 (среда Игла в моди-
фикации Дульбекко), содержащей 2 мМ L-глута-
мина («Панэко», Москва, Россия) и 5% эмбрио-
нальной бычьей сыворотки (HyClone, США)
(далее именуемой полной средой). Пересевы кле-
ток проводили дважды в неделю. Для проведения
трансфекции клетки (30000 ед./лунка) сажали в
24-луночные планшеты на круглые покровные
стекла, предварительно покрытые поли-L-лизи-
ном, и выращивали в течение 20–22 ч при 37°С,
5% СО2. Трансфекцию клеток плазмидами
pmKate2-KCNA2 или pmKate2-KCNA2-KCNA2
проводили с помощью реагента GenJector-U в со-
ответствии с протоколом производителя. Экспе-
рименты проводили через 24–48 ч после транс-
фекции.

Для анализа связывания HgTx−GFP c канала-
ми K-Kv1.2-Kv1.2 к трансфицированным клеткам
в полной среде добавляли HgTx−GFP в диапазоне
концентраций 0.032–2.0 нМ и инкубировали в те-
чение 1 ч при 37°С, 5% СО2. Для анализа конку-
рентного связывания к клеткам в полной среде
добавляли HgTx−GFP (0.2 нМ) вместе с HgTx1
(10 нМ) и инкубировали в течение 1 ч.

Исследования проводили с использованием
лазерного сканирующего конфокального микро-
скопа SP2 (Leica Microsystems GmbH, Германия)
с водно-иммерсионным объективом 63× (HCX
PL APO, NA = 1.2). Разрешение в аксиальном и
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латеральном направлениях составляло 0.6 и
0.2 мкм.

Флуоресценцию каналов возбуждали светом с
длиной волны 561 нм и детектировали в диапазо-
не 680–750 нм. Флуоресценцию HgTx−GFP воз-
буждали светом с длиной волны 488 нм и реги-
стрировали в диапазоне 500–530 нм. Чтобы избе-
жать интерференции флуоресценции mKate2 с
клеточной автофлуоресценцией, возбуждаемой
при 488 нм, для измерения клеточного распреде-
ления флуоресценции HgTx−GFP и К-Kv1.2-
Kv1.2 применяли последовательное сканирова-
ние. 

Количественный анализ взаимодействия
HgTx−GFP с каналом K-Kv1.2-Kv1.2 проводили с
использованием программы ImageJ (версия 1.48,
Национальный институт здравоохранения,
США) в соответствии с процедурой, разработан-
ной ранее [13]. Этот анализ основан на измерении
отношения интенсивностей флуоресценции свя-
занного лиганда HgTx−GFP и канала К-Kv1.2-1.2
на плазматической мембране для выборки клеток
с последующим расчетом среднего значения это-
го отношения (Rav) и стандартного отклонения.

Для определения константы диссоциации (Kd)
комплексов HgTx−GFP с K-Kv1.2-Kv1.2 зависи-
мость Rav от концентрации флуоресцентного ли-
ганда L аппроксимировали следующим уравне-
нием: 

Rav(L)/Rm = L/(Kd + L),

где Rm – максимальное значение Rav, соответ-
ствующее насыщению связывания. Величину Kd
определяли в независимых экспериментах,
усредняли и представляли как среднее ± ошибка
среднего.

Ионные токи каналов K-Kv1.2-Kv1.2 регистри-
ровали при комнатной температуре методом ло-
кальной фиксации потенциала в стандартной
конфигурации «целая клетка» [13]. Через 24–48 ч
после трансфекции стекла диаметром 10 мм, пре-
добработанные поли-D-лизином, с прикреплен-
ными клетками Neuro-2a помещали в камеру
с непрерывной перфузией внеклеточного рас-
твора, имеющего следующий состав: 140 мМ
NaCl, 2.8 мМ KCl, 2 мМ MgCl2, 2 мМ CaCl2,
10 мМ HEPES и 10 мМ глюкозы, pH 7.4. Микро-
пипетки вытягивали из боросиликатного стекла с
микрофиламентом (Sutter Instrument, США) и за-
полняли раствором следующего состава: 140 мМ
KCl, 6 мМ CaCl2, 2 мМ MgCl2, 2 мМ MgATP,
0.4 мМ NaGTP, 10 мМ HEPES, 20 мМ BAP-
TA/KOH, pH 7.3. Сопротивление кончика микро-
пипетки составляло 6–8 МОм, удерживающий
потенциал –70 мВ. Тестовые импульсы длитель-
ностью 250 мс подавали ступенчато от –70 мВ до
70 мВ с шагом 20 мВ. Токи записывали с помо-

щью усилителя EPC-10 (HEKA Elektronik, Герма-
ния). Для регистрации токов выбирали красные
флуоресцирующие клетки. Для обработки ре-
зультатов отбирали клетки, в которых выходящие
токи составляли более 2 нА. 

Для расчета константы времени активации ка-
нала (τact) участки выходящего тока ионов калия
на отрезке от момента активации до максималь-
ного (Im) были аппроксимированы моноэкспо-
ненциальной функцией:

I(t) = Im(1 – exp(–t/τact)).

Для расчета потенциала полуактивации V1/2
рассчитывали проводимость (g) клеток по фор-
муле: 

g = I/(V – EK),

где I – величина калиевых токов через 200 мс по-
сле начала активации, V – активирующий потен-
циал, EK – потенциал реверсии (–80 мВ).

Зависимость нормализованной проводимости
от потенциала была аппроксимирована с помо-
щью уравнения Больцмана: 

g = gmax/(1 + exp((V1/2 – V)/k)),

где gmax – максимальная нормализованная про-
водимость, k – коэффициент наклона кривой.

РЕЗУЛЬТАТЫ
Конструирование конкатемеров K-Kv1.2-Kv1.2

было выполнено на основе α-субъединицы Kv1.2,
меченной по N-концу красным флуоресцентным
белком mKate2 (K-Kv1.2). Ранее нами было пока-
зано, что N-концевое присоединение mKate2 не
мешает переносу канала в плазматическую мем-
брану, в отличие от С-концевого мечения α-субъ-
единицы [13]. Вторую α-субъединицу присоеди-
няли, как предложено ранее [12], через линкер
Lys-Leu. 

Транзиентная трансфекция клеток Neuro-2a
плазмидой pmKate2-KCNA2-KCNA2 приводит к
появлению значительной доли клеток, экспрес-
сирующих K-Kv1.2-Kv1.2. Все эти клетки демон-
стрируют сходное сетчатое распределение кана-
лов в цитоплазме, которое характерно для эндо-
плазматической локализации канала [15], а также
отчетливое окрашивание плазматической мем-
браны (рис. 1а,в,д). Наблюдаемое внутриклеточ-
ное распределение K-Kv1.2-Kv1.2 полностью со-
гласуется с распределением каналов K-Kv1.2 [15].
Для подтверждения мембранной презентации и
формирования канала K-Kv1.2-Kv1.2 клетки ин-
кубировали с HgTx−GFP – с высокоаффинным
флуоресцентным лигандом каналов Kv1.2, в кото-
ром пептидный блокатор HgTx1 соединен
на С-конце с зеленым флуоресцентным белком
eGFP [15]. Связывание HgTx−GFP с каналами
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K-Kv1.2-Kv1.2 на мембране живых клеток Neuro-2a
наблюдалось при субнаномолярных концентра-
циях и достигало насыщения при ~0.5 нМ
(рис. 1в,г,ж). Анализ концентрационно-зависи-
мого связывания HgTx−GFP с каналами K-Kv1.2-
Kv1.2 (рис. 1ж) показал, что образующиеся ком-
плексы характеризуются константой диссоциа-
ции Kd = 0.10 ± 0.02 нМ, которая равна Kd ком-
плексов этого лиганда с каналами K-Kv1.2 [15].
HgTx−GFP вытесняется из комплексов с K-Kv1.2-
Kv1.2 на мембране избытком немеченого HgTx1
(рис. 1д,е). Полученные данные свидетельствуют
о наличии специфического лиганд-связывающе-
го сайта на внеклеточной поверхности канала,
что, в свою очередь, указывает на сохранение ка-
налом K-Kv1.2-Kv1.2 природной тетрамерной
структуры. 

Электрофизиологические характеристики ка-
нала K-Kv1.2-Kv1.2 изучали методом локальной
фиксации потенциала в конфигурации «целая
клетка» на клетках Neuro-2a, транзиентно транс-
фицированных плазмидой pmKate2-KCNA2-
KCNA2. С использованием стандартного прото-
кола (рис. 2а) установлено, что в клетках, экс-
прессирующих конкатемеры K-Kv1.2-Kv1.2, ве-

личина выходящих токов определяется потенци-
алом мембраны и составляет от 2 до 10 нА (рис.
2б), т. е. эти конструкции формируют в мембране
клеток потенциал-зависимые каналы. Каналы
K-Kv1.2-Kv1.2 быстро активировались и практи-
чески не инактивировались в условиях экспери-
мента (рис. 2б), что соответствует свойствам ка-
налов K-Kv1.2 [15] и природных гомотетрамерных
каналов Kv1.2 [3].

Для характеристики кинетических свойств ка-
нала K-Kv1.2-Kv1.2 были исследованы особенно-
сти его активации в сравнении с каналом K-Kv1.2
(рис. 2г). Константы активации каналов (τact) бы-
ли измерены путем аппроксимирования выходя-
щих калиевых токов в процессе открытия каналов
моноэкспоненциальной функцией при различ-
ных заданных потенциалах мембраны. Обнару-
жено, что значения τact выходящих токов канала
K-Kv1.2-Kv1.2 одинаковы с каналом K-Kv1.2 при
всех заданных потенциалах мембраны (рис. 2г). 

Константой, характеризующей вероятность
открытия калиевого канала, является потенциал
полуактивации (V1/2), при котором половина ка-
налов в клетке открыта. Для оценки V1/2 была
изучена зависимость проводимости каналов от

Рис. 1. Распределение каналов на основе K-Kv1.2-Kv1.2 в клетках Neuro-2a (а, в, д) и их взаимодействие с
флуоресцентным лигандом HgTx−GFP. (а–г) – Конфокальные флуоресцентные изображения клеток Neuro-2a,
экспрессирующих K-Kv1.2-Kv1.2, в отсутствиe HgTx−GFP (а, б); в присутствии 0.2 нМ HgTx−GFP (в, г) или в
присутствии 0.2 нМ HgTx−GFP и 10 нМ HgTx1 (д, е). (а, в, д) – Распределение флуоресценции K-Kv1.2-Kv1.2; (г, е) –
распределение флуоресценции HgTx−GFP, добавленного в клеточную среду; (б) – контрольное изображение
свечения клеток в диапазоне флуоресценции HgTx−GFP в отсутствиe лиганда. (ж) – Концентрационная зависимость
связывания HgTx−GFP (L) на мембране клеток, экспрессирующих каналы на основе K-Kv1.2-Kv1.2. Rav и Rm –
расчетные величины, характеризующие текущее (Rav) и максимальное (Rm) связывание лиганда с каналом на
мембране клеток (см. раздел «Материалы и методы»). Данные представлены как среднее ± ошибка среднего по трем
независимым экспериментам. 
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заданного потенциала мембраны. Нормализо-
ванная проводимость каналов была измерена как
функция активирующего потенциала и аппрок-
симирована уравнением Больцмана. Установле-
но, что для канала K-Kv1.2-Kv1.2 величина V1/2
равна –(4 ± 1) мВ, что практически совпадает с
величиной V1/2 для гомотетрамерного канала
K-Kv1.2 –(6 ± 2) мВ (рис. 2в). Таким образом,
объединение α-субъединиц в конкатемер
K-Kv1.2-Kv1.2 не вызывает смещения потенциала
полуактивации канала. 

Полученные данные свидетельствуют о сохра-
нении функциональной активности и кинетиче-
ских свойств флуоресцентного канала Kv1.2, со-
бранного из конкатемеров K-Kv1.2-Kv1.2, и поз-
воляют заключить, что наличие линкера Lys-Leu
между α-субъединицами не оказывает суще-
ственного влияния на электрофизиологические
характеристики канала Kv1.2. 

ОБСУЖДЕНИЕ И ВЫВОДЫ

В работе было проведено конструирование
флуоресцентно меченных конкатемеров K-Kv1.2-
Kv1.2 и изучены свойства образующегося в гете-
рологической системе экспрессии флуоресцент-
но меченного канала. Методом лазерной скани-
рующей конфокальной микроскопии было про-
демонстрировано, что в клетках Neuro-2а
наблюдается высокий уровень экспрессии флуо-
ресцентно-меченых субъединиц. Образование на
основе конкатемеров K-Kv1.2-Kv1.2 функцио-
нально активного канала, имеющего нативную
тетрамерную структуру, было подтверждено дву-
мя методами. Методом лазерной сканирующей
конфокальной микроскопии показано, что флуо-
ресцентный лиганд HgTx−GFP канала K-Kv1.2
[15] способен связываться на мембране клеток
Neuro-2a с каналом K-Kv1.2-Kv1.2 с высокой аф-
финностью и специфичностью. Сохранение ка-

Рис. 2. Электрофизиологические свойства каналов, сформированных из конкатемеров K-Kv1.2-Kv1.2 или четырех инди-
видуальных субъединиц K-Kv1.2. (а) – Протокол измерений. Тестовые импульсы длительностью 250 мс подавали ступен-
чато от –70 мВ до +70 мВ с шагом 20 мВ. (б) – Репрезентативные токи через каналы, сформированные из конкатемеров
K-Kv1.2-Kv1.2, в клетках Neuro-2a. Токи измерены по протоколу (а). Удерживающий потенциал –70 мВ. (в) – Нормализо-
ванные проводимости каналов, сформированных из конкатемеров K-Kv1.2-Kv1.2 или четырех индивидуальных субъеди-
ниц K-Kv1.2, в клетках Neuro-2a в зависимости от заданного потенциала мембраны. Данные аппроксимированы с помо-
щью уравнения Больцмана. Проводимости рассчитаны для токов через 200 мс после начала активации канала. Значения
представлены как среднее ± ошибка среднего (n = 11). (г) – Константы времени активации (τact) каналов, сформированных
из конкатемеров Kv1.2-Kv1.2 или четырех индивидуальных субъединиц Kv1.2, в зависимости от заданного потенциала
мембраны. 
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налами Kv1 правильной тетрамерной структуры
является необходимым условием связывания с
пептидными блокаторами [2], так как во взаимо-
действии с пептидом участвуют остатки несколь-
ких α-субъединиц канала Kv1. Примечательно,
что величина Kd комплексов HgTx−GFP с кана-
лом K-Kv1.2-Kv1.2 полностью совпадает с Kd ком-
плексов лиганда с каналом K-Kv1.2, что указыва-
ет на идентичность всех межмолекулярных кон-
тактов в рассматриваемых комплексах «пептид-
канал». На образование правильной укладки ка-
нала косвенно указывает и высокий уровень
встраивания канала K-Kv1.2-Kv1.2 в плазматиче-
скую мембрану. Биогенез каналов Kv1 в клетке
включает сборку тетрамерных каналов в эндо-
плазматическом ретикулуме с последующим
транспортом в аппарат Гольджи, а затем в клеточ-
ную мембрану. Известно, что в аппарате Гольджи
деградировавшие или неправильно сложенные
каналы претерпевают «обратный» трафик и ис-
ключаются из процесса встраивания в мембрану
клетки [8].

В работе были получены данные об электро-
физиологических свойствах канала K-Kv1.2-
Kv1.2. Канал Kv1.2 на основе конкатемеров
K-Kv1.2-Kv1.2 проявил электрическую актив-
ность, присущую каналу на основе K-Kv1.2. По-
лученные данные свидетельствуют о сохранении
кинетических свойств (времени активации, τact)
канала, который является каналом с быстрой ак-
тивацией и медленной инактивацией [3]. Надо
отметить, что измерения кинетических парамет-
ров каналов Kv1 требуют стандартизации условий
измерений. В частности, температура значитель-
но влияет на величину времени активации кана-
ла. Увеличение температуры приводит к сниже-
нию времени активации [3]. Практически иден-
тичные величины потенциала полуактивации
V1/2 каналов K-Kv1.2-Kv1.2 и K-Kv1.2 также сви-
детельствуют о сохранении функциональной ак-
тивности конкатемерного канала, в частности о
сохранении «воротного» механизма канала, обес-
печивающего взаимодействие потенциал-чув-
ствительного и порового доменов. По литератур-
ным данным, величина V1/2 для канала Kv1.2 кры-
сы, экспрессированного в ооцитах лягушки,
равна ‒(4.9 ± 0.9) мВ [18], что практически совпа-
дает с полученными нами значениям. Широкий
интервал значений V1/2 (от ‒5 до 5 мВ) указан для
различных по видовому происхождению каналов
Kv1.2, экспрессированных в гетерологических
системах [19]. При сравнении полученных в экс-
перименте электрофизиологических параметров
с опубликованными данными важно учитывать,
что условия эксперимента (например, температу-
ра, различия в концентрациях ионов K+ или Mg2+

во внеклеточном или внутриклеточном раство-

рах) могут сказываться на измеряемых величинах
[3]. Сравнивая параметры каналов, экспрессиро-
ванных в гетерологических системах, с нативны-
ми каналами, надо учитывать, что природные ка-
налы образуют мультикомпонентные комплексы,
состоящие не только из различных α-субъединиц
каналов, но и из вспомогательных субъединиц,
таких как, например, Kvβ1 и Kvβ2 [20]. 

Согласно полученным данным объединение
двух α-субъединиц Kv1.2 в конкатемер выбран-
ным нами способом не препятствует формирова-
нию функционально-активных потенциал-зави-
симых каналов и не искажает их электрофизио-
логические характеристики. Данный результат
обосновывает возможность использования ана-
логичного способа объединения двух различных
α-субъединиц в конкатемер для создания различ-
ных вариантов Kv1.2-содержащих гетеротетра-
мерных каналов с контролируемой стехиометри-
ей и свойствами, близкими к природным гетеро-
тетрамерным каналам. 
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α -Subunits of the potassium voltage-gated channel Kv1.2, whose function is to regulate neuronal conductiv-
ity in the central nervous system, form heterotetramers with α-subunits of related Kv1 channels, which differ
in composition and stoichiometry. To study heterotetrameric channels in vitro, concatemers are constructed
by sequentially connecting the Kv1 α-subunits. The method for constructing concatemers that allows one to
reproduce the properties of native channels requires detailed study. In this work, concatemers (dimers) of
Kv1.2 α-subunits (mKate2-Kv1.2-Kv1.2) labeled with the f luorescent protein mKate2 were constructed Kv
and their expression was carried out in mouse neuroblastoma Neuro-2a cells. It was shown that the Kv1.2
channel assembled from concatemers is almost identical in its properties, namely, intracellular distribution,
ability to integrate into the plasma membrane, efficiency of interaction with a peptide blocker, as well as in its
electrophysiological characteristics, to the Kv1.2 channel based on monomeric α-subunits mKate2-Kv1.2.

Keywords: potassium channels, voltage-gated, heterotetramers, peptide blockers, electrophysiology, confocal mi-
croscopy




