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Изучалось защитное действие селенита натрия (Na2SeO3) на окислительную деградацию гема гемо-
глобина, индуцированное пероксидом водорода (H2O2) путем регистрации возникающих двух флу-
оресцирующих продуктов распада гема (λвозб = 321 нм, λэм = 460 нм) и (λвозб = 465 нм, λэм = 525 нм).
Установлено, что селенит натрия тормозит развитие окислительной модификации гемоглобина
(истощение оксигемоглобина, накопление метгемоглобина и феррилгемоглобина), что отражается
на заметном 20–30% снижении пиков флуоресценции, отражающей окислительную деструкцию
гема в условиях отсутствия вклада антипероксидных энзимов (каталазы, глутатионпероксидазы,
пероксиредоксина-2) в утилизации Н2О2. Это ставит вопрос о самостоятельном антиокислитель-
ном значении селена в гемоглобине, в его защите от пероксидного воздействия без участия глутати-
онпероксидазного механизма утилизации H2O2.
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Эритроциты в силу своей специфичности, как
клетки, осуществляющие основной газообмен
(О2, СО2, NO) организма, испытывают непре-
рывное окислительное воздействие с участием
активных форм кислорода и азота. Среди них
наибольшее значение имеет пероксид водорода
(H2O2), образующийся в ходе дисмутации су-
пероксида О2

•–, возникшего в результате окис-
ления оксигемоглобина (HbO2) [1]. В самих эрит-
роцитах в ходе эволюции возникла эффективная
система природных антиокислительных факто-
ров, включающая в себя такие антиокислитель-
ные ферменты, как супероксиддисмутаза, катала-
за (CAT), глутатионпероксидаза (GPX), перокси-
редоксин-2 (PRDX-2) и др., утилизирующие
чрезмерное накопление H2O2 [1–4]. При этом из-
быточное количество H2O2 восстанавливается до

воды в основном посредством CAT и GPX, в то
время как PRDX-2 «работает» предпочтительно в
физиологических пределах накопления H2O2 [3–
7]. Избыток H2O2 приводит к окислительной де-
струкции гемоглобина (Hb) до радикала феррил-
гемоглобина Hb•Fe(IV)=О или феррилгемогло-
бина (HbFe(IV)=О) [8–10].

HbFe(II) + H2O2 → Hb•Fe(IV)=О + H2O + O2,

HbFe(II) + H2O2 → HbFe(IV)=О + H2O.

В свою очередь, гем феррилгемоглобина при
взаимодействии последнего с H2O2 деструктури-
руется, переходя из тетрагональной в ромбиче-
скую структуру (c возможным выходом иона же-
леза из гема) с образованием характерных двух
флуоресцирующих пигментных соединений:
«Соединение 1» с λэм = 460 нм при λвозб = 321 нм
и «Соединение 2» с λэм = 525 нм при λвозб = 465 нм
[11–13]. 

Одним из регуляторов окислительно-восста-
новительных процессов в эритроцитах является
селен и его соединения. Селенит натрия в эритро-

Сокращения: CAT – каталаза, GPX – глутатионпероксида-
за, PRDX-2 – пероксиредоксин-2, Hb – гемоглобин,
HbO2 – оксигемоглобин, GSH – восстановленный глута-
тион, MetHb – метгемоглобин, КФБ – калий фосфатный
буфер.
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цитах обладает сложным и быстротечным редокс-
метаболизмом. В его основе лежит мгновенное
поглощение селена из Na2SeO3 в гемоглобин, где
он связывается с SH-группами цистеина (Cys),
причем более 98% включаемого селена локализу-
ется в Cys93 β-цепи (Hb-Сys93). В этой позиции
селен, тесно взаимодействуя с восстановленным
глутатионом (GSH), модифицирует Сys93-оста-
ток в селентрисульфид. Последний, активно вза-
имодействуя с двумя различными SH-участками
интегрального белка анион-обменника АЕ1, вы-
ходит через мембрану, включаясь в плазменные
альбумины – переносчики селена (так называе-
мый релейный механизм и/или селеновый на-
сос), попадает в кровоток и т.д. В случае изолиро-
ванных эритроцитов из-за отсутствия плазмен-
ных белков-переносчиков селен, будучи
восстановленным из Se+4- до Se–2-состояния и
частично «оседая» в гемоглобин, переносится в
примембранное пространство (см. ссылки в рабо-
те [14]), активно взаимодействуя с GSH. В случае
избытка Na2SeO3 селен фактически «съедает» ре-
сурс GSH и тем самым оказывает токсическое
действие, выступая как прооксидант, стимулиру-
ющий карбонильный стресс и перекисное окис-
ление липидов, инактивирует антиокислитель-
ные энзимы и т.д. (см. ссылки в работе [15]). В ма-
лых дозах селен усиливает антиокислительные
свойства гемоглобина и его основного деривата
метгемоглобина (MetHb), обладающих перокси-
дазной активностью, подобной каталазе. Сама
повышенная реакционная способность SeСys ос-
нована на том, что рКа селената существенно
меньше, чем рКа тиолата (5.2 против 8.5), и кроме
того, SeСys или Sec имеет больше электронов,
больший атомарный радиус, поляризуемость, т. е.
нуклеофильность [16]. Кроме того, избыток свя-
зывания Se в Hb конкурирует со связыванием
СО2 и аминогруппой Hb, что приводит к увеличе-
нию генерации свободного СО2 и способствует
образованию пероксинитрита, сильного проок-
сиданта (см. ссылки в работе [15]). Приведенные
соображения дают возможность селену в опреде-
ленных концентрационных пределах играть роль
антиокислительного протектора.

Принято считать, что при концентрациях
H2O2, близких к «субтоксичным», основной
удельный вес антиокислительной защиты в эрит-
роцитах приходится на селенэнзим GPX [14, 17].
Однако оказалось, что неспецифически включае-
мый в гемоглобин селен также может придавать
антиокислительную устойчивость гемоглобину
вне GPX-механизма [18–21]. Сам гемоглобин, а
также MetHb, будучи гемсодержащими белками,
обладают пероксидазной активностью, в том чис-
ле и квази-GPX-активностью в присутствии глу-

татиона, т. е. разрушают пероксид водорода [19,
22, 23].

Учитывая то, что для человека только около
10–20% внутриэритроцитарного селена охвачено
GPX, а остальные 80–90% приходятся на гемо-
глобин [18, 19, 23, 24], представляется интерес-
ным рассмотрение антиокислительной роли се-
лена в гемоглобине без участия GPX, при исполь-
зовании генерации флуоресцентных соединений
как маркера окислительной деградации гема [10–
13], что и составило предмет исследования.

МАТЕРИАЛЫ И МЕТОДЫ
Реактивы: селенит натрия, азид натрия, йода-

цетамид – производства Sigma-Aldrich (США);
ЭДТА, калий фосфорнокислый однозамещен-
ный, хлористый натрий, 30%-й пероксид водоро-
да – «РеаХим» (Россия), все – квалификации
«х.ч.».

Эритроцитарную массу выделяли из донор-
ской крови, которую трижды промывали 5 объе-
мами изотонического раствора (0.14 М NaCl), пу-
тем трехкратного центрифугирования (800 g,
10 мин). Из нее готовили суспензию эритроцитов
(гематокрит (Ht) ≈ 10%) путем разбавления буфе-
ром (0.05 М калий-фосфатный буфер (КФБ) +
0.14 М NaCl, 0.1 мМ ЭДТА, pH 7.4) для последую-
щих приготовлений соответствующих аликвот,
содержащих ≈50 мкМ Hb. Изучение протектор-
ного действия селенита натрия (Na2SeO3) на
окислительную модификацию гемоглобина или
его гема проводили при его конечной концентра-
циии в инкубационной среде, равной 10 мкМ (это
верхняя граница антиокислительного действия
Na2SeO3, которая ранее была экспериментально
определена сотрудником лаборатории экологи-
ческой биофизики Института биофизики
С.Я. Гусейновой [15]).

Экспериментальный материал был разделен
на 3 группы.

– Группа 1 (контрольная): суспензию эритро-
цитов разводили 0.05 М КФБ + 0.14 М NaCl до
концентрации 50 мкМ и инкубировали в течение
60 мин при температуре 37°С при действии «суб-
токсичной» дозы пероксида водорода (доза пе-
роксидного воздействия, при которой начинает-
ся заметный рост интенсивности флуоресцен-
ции) ≤2 мМ H2O2 (конечный объем аликвот
составлял 3 мл).

– Группа 2: для оценки окислительного эф-
фекта H2O2, оказываемого на гемоглобин, сво-
бодного от участия антипероксидных энзимов
(CAT, GPX, PRDX-2), были использованы их ин-
гибиторы: для CAT – 1.0 мМ азида натрия и для
GPX и PRDX-2 – 5.0 мМ йодацетамида, который
блокирует SH группы как GPX, так и PRDX [17].
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Рис. 1. Зависимость кинетики индуцированного
Н2О2 окисления гемоглобина от концентрации Н2О2
в инкубационной среде (0.05 М КФБ + 0.14 М NaCl +
+ 0.1 мM ЭДТА, рН 7.4, t = 37°C), за 100% HbO2 при-
нимали 45 мкМ; * – p ≤ 0.05, ** – p ≤ 0.01.

Ингибиторы добавляли в исследуемые образцы за
5 мин до начала инкубирования с H2O2.

– Группа 3: одновременно с ингибированием
CAT, GPX и PRDX-2 в инкубационную среду до-
бавляли Na2SeO3 в конечной концентрации
10 мкМ (условия те же, что и для групп 1 и 2). 

Оценки глубины окислительной модифика-
ции гемоглобина (истощение HbO2, накопление
MetHb) проводили спектрофотометрически
(спектрофотометр СФ-46, Россия) по полуэмпи-
рическим формулам, предложенным в работе [8]: 

[oxyHb] = 119A577 – 39A630–89A560,

[MetHb] =28A577 + 307 A630–55 A560.

Интенсивность флуоресценции измеряли на
лабораторной флуориметрической установке, со-
бранной на базе флуориметра ФАС-1, где фотоде-
тектором служил ФЭУ-64, а в качестве источника
света использовали ртутную лампу СВД-120А.
Для возбуждения люминесценции в полосе с мак-
симумом 321 нм и 465 нм использовали ртутные
спектральные линии 313 нм и 347 нм, которые вы-
деляли соответствующими светофильтрами.
Эмиссионное излучение пропускали через ин-
терференционные фильтры (460 нм и 520 нм).

Результаты обрабатывали статистически
(n ≥ 3) при уровне значимости р < 0.05.

РЕЗУЛЬТАТЫ
Прежде чем приступить к опытам по определе-

нию влияния селенита натрия (Na2SeO3) на раз-
витие окислительной деградации гема гемогло-
бина, вызванной H2O2, необходимо было вы-
явить пороговую зависимость флуоресценции от
концентрации H2O2 в инкубационной среде, со-
держащей эритроциты.

Здесь мы исходили из того, что в ходе индуци-
рованного Н2О2 окисления гема совершается
каскад окислительных реакций, начальным зве-
ном которого служит образование высокореак-
тивного феррилгемоглобина. Последний
(HbFe(IV)=0), взаимодействуя со второй молеку-
лой Н2О2, генерирует в гемовом кармане су-
пероксид О2

•–,  который атакует порфирин гема,
изменяя его структуру [9], что сопровождается
возникновением двух видов флуоресцирующих
соединений [11–13]. В итоге нестабильный фер-
рилгемоглобин восстанавливается до относи-
тельно стабильного метгемоглобина по следую-
щей конечной реакции [10]: 

HbFe(IV)=О + H2O2 → HbFe(III) + H2O + O2.

Накопление этого продукта косвенно можно
оценивать по истощению HbO2 и, соответствен-
но, по накоплению метгемоглобина. По этому
показателю условно можно оценить концентра-
ционную субтоксичность H2O2 по критерию
≈30–50% истощения HbO2. 

Из рис. 2 видно, что при конечной концентра-
ции в 0.5 мМ и выше наблюдается также и накоп-
ление метгемоглобина, которое отражается на
интенсивности пиков флуоресценции обоих пиг-
ментов окислительной деградации гема. При
этом рост интенсивности накопления метгемо-
глобина аналогичен росту интенсивности пиков
флуоресценции обоих пигментных соединений.
Это свидетельствует о том, что причиной возник-
новения флуоресцирующих пигментов служит
структурная перестройка гема, возникшая при
образовании феррилгемоглобина в ходе окисле-
ния гема H2O2, который в итоге восстанавливает-
ся до MetHb (рис. 2).

В целях достижения лучшей наглядности вли-
яния H2O2 на флуоресценцию образцов кон-
трольных опытов (т. е. без участия селенита на-
трия, группа 2) была выбрана конечная концен-
трация в 2.0 мМ при времени инкубирования
60 мин как показатель «субтоксичной» дозы.
Однако невысокий уровень интенсивности (пре-
вышение над фоном или контрольного уровня)
флуоресценции связан с наличием эффективной
антипероксидной системы энзимов (CAT,
GPX, PRDX-2). В случае использования ингиби-
торов этих энзимов картина окислительного
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воздействия H2O2 становится значительно более
наглядной (рис. 3).

Так, из рис. 3 видно, что уже на 10-й минуте
инкубирования с H2O2 имеет место существен-
ный рост интенсивности флуоресцентных пиков,
свидетельствующий о начале структурных пере-
строек гема.

Результаты с использованием Na2SеO3 в каче-
стве возможного антиоксиданта, снижающего
окислительное повреждение гема, индуцирован-
ное относительно высокой дозой Н2O2 (2.0 мМ,
60 мин), представлены на рис. 4. Видно, что, в
случае использования обоих ингибиторов актив-
ности антипероксидных энзимов имеет место

Рис. 2. Влияние конечной концентрации Н2О2 в инкубационной среде (0.05М КФБ, 0.14 М NaCl, 0.1 мM ЭДТА,
рН 7.4, t = 37°C, время инкубирования 60 мин), содержащей эритроциты (≈ 50 мкМ Hb), на интенсивность
флуоресценции продуктов окислительной деградации гема: (а) – накопление MetHb в %, за 100% приняты 17 мкМ
MetHb; (б) – интенсивность флуоресценции, λвозб = 313 нм, λэм = 460 нм; (в) – интенсивность флуоресценции,
λвозб = 437 нм, λэм = 520 нм.

Рис. 3. Влияние H2O2 (2.0 мМ) на развитие флуоресценции в суспензии эритроцитов (≈50 мкМ Hb) в инкубационной
среде (0.05М КФБ, 0.14 М NaCl, 0.1 мM ЭДТА, рН 7.4, t = 37°C, время инкубирования 60 мин) в присутствии
ингибиторов антипероксидных энзимов – CAT (азид натрия, 10 мМ), GPX и PRDX-2 (йодацетамид, 50 мМ).
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существенное снижение интенсивности флуо-
ресценции обоих образующихся пигментов. Сни-
жение интенсивности пигментообразования про-
исходит и в случае использования азида натрия
(NaN3), ингибитора GPX-активности (при высо-
кой генерации Н2O2 вклад PRDX-2 незначите-
лен). Все это дает основание утверждать, что
включаемый в гемоглобин селен из Na2SeO3 ока-
зывает определенное протекторное действие про-
тив индуцированного Н2O2 окислительного по-
вреждения гема без дополнительного участия
глутатионпероксидазного механизма утилизации
пероксида водорода.

ОБСУЖДЕНИЕ

Селен является уникальным элементом, ак-
тивно участвующим во многих ключевых регуля-
торных процессах во всех доменах жизни. Будучи
наиболее близким по своим физико-химическим
свойствам среди халькогенов к сере, он замещает
ее во многих биохимических реакциях [25, 26].
При этом, являясь химически более активным
элементом, чем сера (повышенная нуклеофиль-
ность), селен может более активно влиять на кле-
точный метаболизм, в частности в эритроцитах
[15]. 

Уместно заметить, что SH-группы глобиновых
субъединиц обеспечивают возможность анти-
окислительной защиты гема гемоглобина [27–
29], являющегося наиболее легко окисляемой ча-

стью гемоглобина, в которой ион железа при
окислении меняет свойства гемоглобина. В ко-
нечном счете эти SH-группы оказывают влияние
на окислительный метаболизм эритроцитов в це-
лом [1, 3, 5, 6].

Из полученных результатов можно заключить,
что Na2SeO3 в оптимальной конечной концен-
трации 10 мкМ, вносимый в среду инкубирова-
ния, содержащую суспензию эритроцитов с ко-
нечной концентрацией 50 мкМ HbO2, оказывает
определенный антиокислительный эффект (сни-
жение истощения HbO2, накопление MetHb) на
окислительную модификацию гемоглобина, ин-
дуцированную H2О2 при «субтоксичных» кон-
центрациях (0.5 мМ, 1.0 мМ) и выше (2.0 мМ), т.
е. в тех дозовых значениях, при которых явно за-
метно увеличение интенсивности флуоресцен-
ции образующихся пигментов, свидетельствую-
щее о начале ромбической перестройки гема. Сам
факт антиокислительного действия селенита на-
трия по отношению к гемоглобину (снижение
метгемоглобинобразования) был установлен еще
в 1970–1980 гг. как в опытах in vivo, так и in vitro
[30, 31]. В другой работе группой исследователей
на основе собственных данных и имеющихся в
литературе сведений сделан вывод о том, что ин-
дуцированные гемоглобином окислительные по-
вреждения клеток могут быть снижены
селеном (селенит натрия) без антиокислительно-
го участия GPX-механизма [32]. Было предполо-
жено, что селен, замещая серу в SH-группах

Рис. 4. Влияние Na2SеO3 (10 мкМ) на развитие гемовой флуоресценции, индуцированной Н2O2 (2.0 мМ) в
эритроцитах в инкубационной среде (условия те же, что на рис. 3).
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аминокислот Hb, образует новые клеточные ан-
тиокислительные центры. В более поздней работе
другие исследователи на примере синтетических
переносчиков кислорода на основе Hb показали,
что Na2SeO3 может снижать окислительное пора-
жение в гемоглобине напрямую, вступая в реак-
цию непосредственно с Hb без участия GPX [33].
Авторы предположили, что это происходит из-за
доступности сайта гема для селена из селенита
натрия.

Сотрудниками лаборатории экологической
биофизики Института биофизики было показа-
но, что антиокислительное действие селена по
протекции гемоглобина при фотоокислительных
процессах и др. также возможно и без участия
GPX-механизма утилизации пероксидов, и оно
может иметь самостоятельное значение [15, 18,
19, 35]. Представляется логичным объяснение
этого явления тем, что селен (в определенных
концентрационных пределах), включаясь в SH-
группы Hb, придает им большую реакционную
способность. Кроме того, также показано что,
включение селена в гемоглобин несколько увели-
чивает его пероксидазную активность в присут-
ствии GSH [15]. При этом селенит, применяемый
в наших опытах, в низкой концентрации при фо-
тоокислении и других процессах способствует
увеличению содержания GSH, что положительно
влияет на антиокислительный потенциал эритро-
цитов [15]. 

Касаясь механизма антиокислительного дей-
ствия Se в Hb, можно заметить, что он укладыва-
ется в рамки «гипотезы связывания», выдвинутой
в 2000 г. группой исследователей [34]. Суть этой
гипотезы состоит в том, что селен может нахо-
диться в такой позиции, в которой он будет пре-
пятствовать движению электронов от окисляемо-
го вещества к кислороду. Подобную мысль мы
высказывали в 2008 г., рассматривая «примесь» Se
в гемоглобине, как электронную «ловушку» [35].
Действительно, возможно допустить, что вклю-
чаемый в β-цепь Hb селен, обладая большим ато-
марным радиусом, повышенной электроотрица-
тельностью, поляризуемостью, будет препятство-
вать движению электронов от Fe+2 гема в сторону
Н2О2, тем самым тормозя образование Fe+4 (фер-
рилгемоглобина), который, взаимодействуя с но-
вой молекулой Н2О2, генерирует новый суперок-
сид в гемовом кармане, что в конечном счете де-
градирует сам гем. 

ВЫВОДЫ
1. Установлено, что заметное развитие процес-

са окисления гемоглобина, индуцированного пе-
роксидом водорода, начинается при конечной
концентрации в инкубационной среде более
0.5 мМ. 

2. Показано, что совместное применение ази-
да натрия (ингибитора активности каталазы) и
йодацетамида (ингибитора активности глутати-
онпероксидазы и пероксиредоксина-2) приводит
к увеличению интенсивности флуоресценции,
которое происходит уже на 10-й минуте инкуби-
рования эритроцитов при 37°С. 

3. При использовании селенита натрия
(10 мкМ) все показатели индуцированной флуо-
ресценции снижаются в среднем на 20–30% в
условиях ингибирования активности антиперок-
сидных энзимов, что свидетельствует о том, что
антиоксидантное действие селена на гемоглобин
при воздействии Н2O2 может осуществляться без
участия механизмов GPX, т.е. селен в гемоглоби-
не может иметь самостоятельное антиокисли-
тельное значение.
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 Selenium as a Protector Against Hydrogen Peroxide Oxidative Degradation of Heme 
of Hemoglobin without the Glutathione Peroxidase Mechanism

 T.M. Huseynov*, S.M. Rahmanova*, and F.R. Mehraliyeva*

*Institute of Biophysics, Ministry of Science and Education of Azerbaijan Republic,
ul. Zahida Khalilova 117, Baku, AZ-1141, Azerbaijan

The protective effect of sodium selenite (Na2SeO3) on the oxidative degradation of hemoglobin induced by
hydrogen peroxide (H2O2) was studied by recording the resulting two f luorescent products of heme break-
down (λex = 321 nm, λem = 460 nm) and (λex = 465 nm, λem = 525 nm). It has been established that sodium
selenite (Na2SeO3) inhibits the development of oxidative modification of hemoglobin (depletion of oxyhe-
moglobin, accumulation of methemoglobin and ferrylhemoglobin), which is ref lected in a noticeable 20–
30% decrease in f luorescence peaks, ref lecting the oxidative destruction of heme in the absence of the con-
tribution of antiperoxide enzymes (catalase, glutathione peroxidase, peroxiredoxin-2) in Н2О2 utilization.
This raises the question of the independent AO significance of selenium in hemoglobin, in its protection from
peroxide effects without the GPX mechanism of Н2О2 utilization.

Keywords: hydrogen peroxide, selenium, sodium selenite, fluorescence, glutathione peroxidase, erythrocyte




