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Показано, что превращение катиона нитрозония (NO+) в молекулу NO в составе нитропруссида на-
трия под действием сильного восстановителя – дитионита натрия не подавляет полностью цито-
токсического действия раствора нитропруссида натрия как NO+ донора на культуру опухолевых
клеток MCF-7. Дело в том, что высвобождающиеся из нитропруссида в этих условиях молекулы NO
и ионы Fe2+ образуют вместе с тиолсодержащими лигандами (тиосульфатом как продуктом распада
дитионита натрия или тиоловыми группами белков) динитрозильные комплексы железа, в которых
половина нитрозильных лигандов представлена в форме цитотоксических катионов нитрозония.
Более чем в 3 раза меньшее количество образующихся при этом динитрозильных комплексов желе-
за по сравнению c исходным уровнем нитропруссида натрия и является основной причиной ослаб-
ления цитотоксического действия раствора нитропруссида натрия на клеточную культуру.
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В настоящее время установлено, что во всех
представителях живого мира – человеке и живот-
ных, растениях и бактериях непрерывно фермен-
тативным путeм продуцируется простейшее хи-
мическое соединение – монооксид (или оксид)
азота (NO), функционирующее в живых организ-
мах в качестве универсального регулятора разно-
образных биологических процессов. Кроме регу-
ляторного действия, NO в организме человека и
животных выступает в качестве одного из эффек-
торов системы клеточного иммунитета, оказывая
на клетки и ткани цитотоксическое действие [1].

По мнению большинства исследователей, цито-
токсическое действие оказывает не сам молекуляр-
ный оксид азота, а продукт его реакции с анионом
супероксида – пероксинитрит (ONOO–) [2, 3]. Про-
тонирование этого агента при физиологических
значениях рН приводит к образованию соответству-
ющей неустойчивой кислоты (HONOO), распадаю-

щейся на диоксид азота (NO2) и свободный радикал
гидроксила (OH•) – чрезвычайно сильный окисли-
тель, определяющий цитотоксическое действие пе-
роксинитрита [2, 3].

Имеется и другая точка зрения на природу
агента, ответственного за цитотоксическое дей-
ствие NO. В качествае такого агента может высту-
пать продукт одноэлектронного окисления NO –
катион нитрозония (NO+) [4–6]. Есть основание
полагать, что негативное действие последнего на
живые организмы определяется способностью
связываться с тиоловыми группами критически
важных для метаболизма тиолсодержащих
белков. Результирующее S-нитрозирование
этих белков приводит к нарушению их функцио-
нирования и снижению жизнеспособности кле-
ток [4–6].

Цитотоксическое действие катионов нитрозо-
ния на клетки впервые было продемонстрирова-
но в работе [4], в которой в качестве донора этих
катионов были использованы анионы нитро-
пруссида, характеризующиеся резонансной
структурой [(CN)−

5Fe2+−NO+]2-.  В концентрации

Сокращения: SNP – нитропруссид натрия, SDT – дитио-
нит натрия, ДНКЖ – динитрозильные комплексы железа,
М-ДНКЖ – моноядерные динитрозильные комплексы
железа. 
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1 мМ эти ионы при добавлении к культуре 3T3
фибробластов уже через 2 ч вызывали гибель кле-
ток. Менее эффективное действие в той же кон-
центрации оказывали молекулярный оксид азота
и донор NO S-нитрозоглутатион (GS−NO). Они
уничтожали клетки фибробластов лишь через 24 ч
после их введения в клеточную культуру. Исходя
из этого, был сделан вывод, что цитотоксическое
действие нитропруссида определяется в основ-
ном его способностью высвобождать в клетках
катионы нитрозония [4].

Как было показано в работах [7, 8], нитропруссид
может выступать и в качестве донора нейтральных
молекул NO. Благодаря этому свойству он широко
используется в клинике как средство, понижающее
артериальное давление [9], для профилактики и те-
рапии острой сердечной недостаточности [10], при
шизофрении [11]. Способность продуцировать NO
нитропруссид приобретает после одноэлектронного
восстановления, в результате чего его резонансная
структура вместо вышеописанной трансформирует-
ся в [(CN)–

5 Fe2+−NO]3–.  В связи с этим можно бы-
ло ожидать, что после такой трансформации, в ре-
зультате которой NO+ в молекуле нитропруссида
превращается в NO, его цитотоксическая актив-
ность может существенно ослабляться. Эта возмож-
ность была проверена в настоящей работе на культу-
ре клеток аденокарциномы молочной железы чело-
века линии MCF-7 при восстановлении
нитропруссида одним из сильнейших восстанови-
телей – дитионитом. 

МАТЕРИАЛЫ И МЕТОДЫ
Реактивы. Сухие препараты нитропруссида

натрия и дитионита натрия (соответственно sodi-
um nitroprusside (SNP) и sodium dithionite (SDT),
Sigma-Aldrich, США) хранили при –20°С и рас-
творяли ex temporo в инкубационной среде. 

Клетки аденокарциномы молочной железы чело-
века линии MCF-7 культивировали в атмосфере
5% СО2 при 37°С в среде DMEM (Thermo Fisher
Scientific, США), содержащей 10% эмбриональ-
ной телячьей сыворотки, 2 мМ глутамина и
10 ед./мл смеси пенициллина и стрептомицина
(«ПанЭко», Россия).

Цитотоксичность оценивали по снижению ме-
таболической активности клеток с помощью
МТТ-теста, основанного на определении актив-
ности NAD(P)-зависимых дегидрогеназ [12].

Целостность клеточной мемраны. В качестве
дополнительного показателя цитотоксического
действия SNP на клетки использовалось измене-
ние целостности (интактности) клеточных мем-
бран, оцениваемое по стандартной методике
двойного окрашивания клеток флуоресцирую-
щими красителями [13]. К тестируемой клеточ-

ной суспензии в фосфатно-солевом буфере + 10%
cыворотки добавляли смесь красителей акриди-
нового оранжевого и иодистого пропидия до ко-
нечной концентрации в суспензии 5 мкг/мл каж-
дого. Суспензию (35 мкл) наносили на предмет-
ное стекло и накрывали покровным стеклом
(24 × 24 мм), которое по периметру окружали ла-
ком, что исключало испарение и изменение ион-
ного состава среды под покровным стеклом.
Микроскопию и накопление микрофотографий в
памяти компьютера проводили спустя 10–15 мин
после добавления красителей. При синем фильтре
возбуждения иодистый пропидий флуоресцирует в
зеленой области, акридиновый оранжевый – в
красной области. Пока мембрана клетки не повре-
ждена, иодистый пропидий не проникает в клетку,
цитоплазма и ядро остаются зелеными. Наруше-
ние клеточной мембраны сдвигает окраску цито-
плазмы и ядра в оранжевую/красную сторону.
Подсчет клеток и анализ морфологических изме-
нений в клетках проводили по микрофотографи-
ям, получаемым с объективом ×40.

ЭПР-измерения. Спектры ЭПР растворов SNP, 
обработанных SDT, регистрировали на модифи-
цированном радиоспектрометре фирмы RadioPan 
(Польша) при температуре жидкого азота (77 К) и 
комнатной температуре. Концентрацию возни-
кающих при этом парамагнитного SNP и динит-
розильных комплексов железа (ДНКЖ) с тиоло-
выми группами альбумина или тиосульфатом 
оценивали методом двойного интегрирования, 
используя в качестве стандартного образца моно-
ядерную форму ДНКЖ с глутатионом с известной 
концентрацией этих комплексов, полученную, как 
описано в работе [6].

РЕЗУЛЬТАТЫ
Цитотоксическая активность нитропруссида на-

трия и влияние на нее сильного восстановителя –
дитионита натрия. На рис. 1а приводятся резуль-
таты оценки выживаемости MCF-7 клеток по
МТТ-тесту в зависимости от концентрации SNP в
культуральной среде при инкубации клеток в ней
в течение 24 или 48 ч. Цитотоксическое действие
SNP усиливалось по мере повышения концентра-
ции этого агента, причем эта зависимость не из-
менялась при двукратном увеличении времени
инкубации клеток с SNP. Этот результат свиде-
тельствует о быстром цитотоксическом повре-
ждении клеток под действием SNP, протекавшем
в течение первых суток. Что касается цитотокси-
ческой активности SDT, она оказалась незначи-
тельной: при концентрации SDT, равной 1 мМ,
погибало не более 5% клеток МCF-7. 

Как и ожидалось, SDT, как сильный восстано-
витель, резко ослаблял цитотоксичсеское дей-
ствие SNP при его введении в культуральную сре-
ду в концентрации, в два раза превышавшей
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Рис. 1. (а) – Снижение выживаемости клеток MCF-7 по МТТ-тесту в зависимости от концентрации нитропруссида (SNP)
в культуральной среде при инкубации клеток в течение одного и двух суток. (б) – Кривая 1: изменение выживаемости
клеток по МТТ-тесту при одновременном введении в среду инкубации SNP и SDT при соотношении их концентраций 1 : 2.
По оси абцисс – концентрация дитионита (SDT), соответственно, концентрация нитропруссида в два раза ниже. Кривая 2:
рассчитанная выживаемость клеток при одновременном действии на них SNP и SDT при отсутствии взаимодействия
между ними.

концентрацию SNP (рис. 1б, кривая 1). На кри-
вой 2 (рис. 1б) приводится рассчитанная выжива-
емость при одновременном действии на клетки
SNP и SDT при отсутствии взаимодействия меж-
ду ними: соответствующую им выживаемость
определяли как произведение измеряемой в экс-
перименте выживаемости клеток при действии на
них только SNP или только SDT.

Как следует из этого графика, взаимодействие
SNP и SDT в среде инкубации клеток приводило
к заметному повышению выживаемости клеток
(рис. 1б). Тем не менее, цитотоксическое дей-
ствие SNP, несмотря на предполагаемое превра-
щение нитрозония в его составе в NО, сохраня-
лось. Почему? Ответ на этот вопрос был получен
при изучении методом ЭПР последствий взаимо-
действия SNP с SDT. Оказалось, что, действи-
тельно, SNP под действием SDT при рН > 7 пол-
ностью переходил из диамагнитного (ЭПР-неак-
тивного) состояния в парамагнитное состояние,
характеризующееся триплетным сигналом ЭПР,
приведенным на рис. 2а. По форме и положению
(значениям g-фактора) он был идентичен опи-
санному в литературе сигналу ЭПР от SNP, вос-
становленного различными восстановителями в
щелочной среде [14]. Оценка концентрации вос-
становленного SNP, ответственного за сигнал,
приведенный на рис. 2а, показала, что она в точ-
ности равна 1 мМ этого соединения, растворен-
ного в воде при рН 9.0. Если же нитропруссид в
концентрации 0.5 мМ растворяли в среде инкуба-
ции клеток при рН 6.8, то при введении в нее
1 мМ дитионита вместо сигнала, приведенного на
рис. 2а, регистрировался сигнал ЭПР моноядер-
ных ДНКЖ (М-ДНКЖ) с тиоловыми группами

белков (типа альбумина), присутствующих в сре-
де инкубации (рис. 2б). Сигнал характеризовался
тремя значениями g-фактора (2.05, 2.03 и 2.014) и
был идентичен сигналу ЭПР М-ДНКЖ с сыворо-
точным альбумином, приведенным в работе [15].
Концентрация этих центров, определенная мето-
дом двойного интегрирования их сигнала ЭПР,
составила 0.15 мМ. Если же аналогичную проце-
дуру проводили с раствором SNP в дистиллиро-
ванной воде при рН 6.5, то регистрировался сиг-
нал ЭПР М-ДНКЖ с тиосульфатом (также тиол-
содержащим соединением), характеризующийся
двумя значениями g-фактора (аналогичный при-
веденному в работе [16]) (рис. 2в), cоответствую-
щий концентрации М-ДНКЖ, равной 0.1 мМ.

Об идентификации сигналов, приведенных на
рис. 2б и 2в, как обусловленных соответственно
М-ДНКЖ с белком и М-ДНКЖ с тиосульфатом,
свидетельствовали также следующие факты –
при комнатной температуре их регистрации пер-
вый сохранял ту же форму, что и при 77 К, а вто-
рой сужался и давал 5-компонентную сверхтон-
кую структуру в полном соответствии с литера-
турными данными. Сохранение формы сигнала
ЭПР при повышении температуры регистрации
свидетельствовало о связи М-ДНКЖ с крупными
молекулами – белками, подвижность которых
при комнатной температуре была недостаточной
для усреднения анизотропии g-фактора этого
сигнала. Такое усреднение имело место для сиг-
нала ЭПР М-ДНКЖ с небольшими по размерам
лигандами – молекулами тиосульфата, что и
обеспечивало сужение этого сигнала при повы-
шении температуры его регистрации до комнат-
ной.
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Сигнал, приведенный на рис. 2г и обусловлен-
ный М-ДНКЖ с глутатионом, использовался в
ходе оценки концентрации парамагнитных цен-
тров, сигналы ЭПР которых приведены на
рис. 2а–в, методом их двойного интегрирования.
Концентрация ДНКЖ с глутатионом составляла
0.3 мМ.

Таким образом, обработка SNP дитионитом
при рН < 7.0, приводившая к его восстановлению,
сопровождалась распадом SNP и образованием
М-ДНКЖ с тиолсодержащими лигандами – тио-
сульфатом или тиоловыми группами белков. Как
будет сказано в разделе «Обсуждение», эти ком-
плексы могут выступать как донорами NO, так и
донорами NO+ – последнее и определяет пока-
занное на рис. 1б частичное сохранение цитоток-
сичности раствора SNP после его обработки ди-
тионитом.

На рис. 3а представлены результаты оценки
выживаемости клеток по сохранению целостно-
сти их мембраны при действии на клетки смеси
(Mix) SNP (0.3 Мм) и SDT (0.6 мМ) и рассчитан-

ной для этих клеток выживаемости при одновре-
менном действии на клетки SNP и SDT в тех же
концентрациях при отсутствии взаимодействия
между этими соединениями (Sum SNP−SDT).
Как следует из методической части, целостность
мембраны как показатель выживаемости клеток
оценивалась по количеству клеток, окрашенных
в зеленый цвет (сохранивших целостность мем-
браны) (рис. 3a). Эти оценки показали, что коли-
чество зеленых (выживших) клеток при одновре-
менном введении в клеточную культуру SNP и
SDT оказалось заметно выше, чем это имело ме-
сто при рассчитанном количестве этих клеток
при отсутствии взаимодействия между SNP и
SDT (рис. 3б). Этот факт находится в полном со-
гласии с результатами вышеописанных экспери-
ментов с использованием МТТ-теста.

ОБСУЖДЕНИЕ

Распад SNP в водном растворе при рН < 7 под
действием SDT, приводящий к образованию
ЭПР-активного М-ДНКЖ с тиосульфатом как

Рис. 2. Форма сигналов ЭПР: (а) – 1 мМ раствора нитропруссида (SNP) при рН 8.0 при введении в него 2 мМ дитионита;
(б) – 0.5 мМ раствора SNP в среде инкубации при рН 6.8 после добавления в нее 1 мМ SDT; (в) – 0.5 мМ раствора SNP в
дистиллированной воде (рН 6.5) после добавления в нее 1 мМ SDT; (г) – сигнал ЭПР 0.3 мМ раствора М-ДНКЖ с
глутатионом, использованного в качестве эталона при определении концентрации парамагнитных центров, ответственных
за вышеприведенные сигналы ЭПР. Запись при 77 К.
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тиолсодержащим лигандом, впервые был обнару-
жен и изучен в 1960-е годы [16]. Было показано, 
что такое превращение происходит только в вод-
ной фазе. В полярных органических растворите-
лях, например в диметилформамиде или димети-
сульфиде, SNP при контакте с SDT восстанавли-
вается, сохраняя свою целостность, с переходом в 
парамагнитное состояние, сигнал ЭПР для кото-
рого отличается от приведенного на рис. 2а. 
Он характеризуется значениями g-фактора с
g⊥ = 2.031, g||  =  2.006 и триплетной сверхтонкой
структурой при g⊥  [14].

В соответствии с предлагаемым нами механиз-
мом образования М-ДНКЖ с тиолсодержащими
лиандами [17, 18], приведенным на схеме 1, воз-
никновение М-ДНКЖ с тиосульфатом или тио-
ловыми группами белков при взаимодействии
SNP с SDT осуществляется в результате реакции
диспропорционирования молекул NO, высвобо-
дившихся из SNP и связавшихся попарно с ионом
двухвалентного железа, также высвобождающе-
гося из SNP, с последующим включением в этот
комплекс тиолсодержащих лигандов (RS–) – мо-
лекул тиосульфата или тиоловых групп белков:

Диспропорционирование молекул NO приво-
дит к появлению в лигандной сфере железа кати-
она нитрозония (NO+) и аниона нитроксила
(NO–). Последний, присоединяя протон, превра-
щается в молекулу нитроксила, выходящую из
комплекса с последующим превращением в за-
кись азота и воду. Освободившееся в лигандном
окружении железа место занимает третья молеку-
ла NO c образованием ЭПР-активного
М-ДНКЖ, характеризующегося резонансной
структурой [(RS–)2Fe2+(NO)(NO+)]+. Что каса-
ется сохранения в этой структуре одного из нит-
розильных лигандов в форме катиона нитрозо-

ния, оно обеспечивается переносом электронной
плотности с атомов тиоловой серы на этот кати-
он. Это приводит к нейтрализации положитель-
ного заряда на этом лиганде, в результате блоки-
руется его взаимодействие с анионом гидроксила
и тем самым реализуется приводимая резонанс-
ная структура М-ДНКЖ. Ее реализация обеспе-
чивает способность этих комплексов равноэф-
фективно выступать в качестве доноров как ней-
тральных молекул NO, так и катионов
нитрозония – агентов, ответственных за цитоток-
сическое действие М-ДНКЖ, образующихся в
реакции SNP c SDT.

Cхема 1. Предлагаемый механизм образования М-ДНКЖ с тиолсодержащими лиандами.

Рис. 3. (а) – Микрофотография культуры клеток MCF-7, окрашенных смесью акридинового оранжевого и иодистого
пропидия. (б) – Цитотоксичность смеси SNP + SDT (квадраты) и расчитанная суммарная цитотоксичность SNP и SDT без
учета их взаимодействия (треугольники). 
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Как следует из схемы 1, на образование одного 
М-ДНКЖ с тиолсодержащими лигандами расхо-
дуется три молекулы NO, т. е. используется не ме-
нее трех молекул SNP, высвобождающих NO по-
сле одноэлектронного восстановления, что пол-
ностью согласуется с результатами ЭПР-оценок 
уровня М-ДНКЖ с тиосульфатом или тиоловыми 
группами белков, образующихся после обработки 
SNP дитионитом соответственно в воде или среде 
культивации клеток MCF-7. В результате, в соот-
ветствии с указанной выше резонансной структу-
рой  образующихся  М-ДНКЖ  как доноров NO и
NO+, уровень катионов нитрозония в растворе по
сравнению с исходной концентрацией SNP сни-
жается как минимум в 3 раза, что и приводит к то-
му, что цитотоксическое действие этого раствора
SNP на клетки МCF-7 после добавления в этот
раствор SDT ослабляется не менее чем в 3 раза.
Более высокая степень такого ослабления, де-
монстрируемая на рис. 1б, могла быть обусловле-
на менее эффективным высвобождением NO+ из
М-ДНКЖ с тиосульфатом или тиоловыми груп-
пами белков по сравнению с аналогичным про-
цессом, характерным для SNP.

Таким образом, оказалось невозможным пол-
ностью снять цитотоксическое действие на кле-
точную культуру MCF-7 (по-видимому, и на дру-
гие клетки и ткани) катиона нитрозония, входя-
щего в состав SNP, путем его одноэлектронного
восстановления до NO из-за способности живых
организмов образовывать при участии ионов Fe2+

и молекул NO, высвобождающихся из SNP,
ДНКЖ с тиолсодержащими лигандами, всегда
присутствующими в этих организмах. Как и не-
восстановленные комплексы SNP, образующие-
ся ДНКЖ характеризуются наличием в них цито-
токсических компонентов – катионов нитрозо-
ния.

О цитотоксичском действии на клеточные
культуры именно NO+, а не нейтральных молекул
NO, входящих в состав М-ДНКЖ с тиосульфа-
том, свидетельствуют результаты опытов немец-
ких и российских исследователей, в которых бы-
ло показано, что обработка этих комплексов од-
ним из производных дитиокарбамата – N-метил-
D-глюкаминдитиокарбаматом (МГД) усиливала
цитотоксическую активность раствора М-ДНКЖ
[5]. Это усиление было обусловлено распадом
М-ДНКЖ под действием N-метил-D-глюкамин-
дитиокарбамата, приводившим к высвобожде-
нию NO+ из М-ДНКЖ, которые и оказывали
токсическое действие на клеточные культуры.
Что касается нейтральных молекул NO, входив-
ших в состав М-ДНКЖ, они «выходили из игры»,
включаясь в образующиеся стабильные мононит-
розильные комплексы железа с N-метил-D-глю-

каминдитиокарбаматом, неспособные высво-
бождать молекулы NO [19].
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 Nitrosonium Cation as a Nitroprusside Constituent Determining Its Cytotoxicity
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It has been demonstrated that nitrosonium cation (NO+) transformation as a constituent of sodium nitro-
prusside into NO molecule under action of sodium dithionite as a strong reducer did not result in full supres-
sion of cytotoxic activity of nitroprusside solution as NO+ donor on the culture of MCF-7 tumour cells. As a
matter of fact, NO molecules and Fe2+ ions released from SNP at this conditions formed dinitrosyl iron com-
plexes with thiol-containing ligands (thiol-containing proteins or thiosulphate anions appeared from decom-
posed dithionite).The half of nitrosyl ligands in the complexes represented also as in nitroprusside in cytotox-
ic NO+ form. Nevertheless because the amount of dinitrosyl iron complexes was three times less than that of
initial nitroprusside the cytotoxic effect of nitroprusside solution as NO+ donors sharply decreased under ac-
tion of dithionite on nitroprusside. 
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