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Построение прогноза признаков, связанных с урожайностью, таких, например, как вес тысячи се-
мян, позволяет исследователям создавать сорта, достигающие максимальной эффективности и
ценности в условиях изменения климата. В данной работе предложена сетевая марковская модель
прогнозирования важного фенотипического признака «вес тысячи семян» у генотипов нута, кото-
рая использует предварительно отобранные снипы и погодные данные за 5 дней до и 20 дней после
посева, такие как минимальная и максимальная температуры, количество осадков, влажность, ин-
фракрасное излучение и длина светового дня. Построенная модель предсказывает признак «вес ты-
сячи семян» с высокой точностью – коэффициент корреляции Пирсона составляет 0.83.
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Математическое моделирование зависимости
фенотипических признаков от генетических и
погодных факторов является важным инструмен-
том совершенствования селекции зернобобовых
культур, поскольку дает возможность строить
прогнозы поведения растений в изменяющейся
среде. Нут (Cicer arietinum L.) богат пищевым бел-
ком и занимает второе место по распространен-
ности среди зернобобовых культур благодаря сво-
ей питательной ценности и способности фикси-
ровать азот, тем самым повышая плодородие
почв [1]. Совершенствование сортов сельскохо-
зяйственных культур является важным условием
для обеспечения продовольственной безопасно-
сти растущего населения земного шара. Дикорас-
тущий предок культурного нута является расте-
нием длинного дня и проявляет чувствительность
к яровизации [2, 3], в отличие от культивируемых
генотипов, пригодных для весеннего посева [3, 4].

Факторами, влияющими на продуктивность
генотипов нута, являются температурный режим,
продолжительность светового дня, доступность
воды [2, 5].

Разработаны несколько математических моде-
лей для прогнозирования фенотипических при-
знаков нута в зависимости от погодных условий –
SSM [6, 7], DSSAT [8–12], APSIM [13] и др. [14,
15]. Для описания процессов фотосинтеза, погло-

щения воды и других биофизических и биохими-
ческих реакций используются дифференциаль-
ные уравнения, которые решаются с шагом по
времени, равным 1 суткам либо 1 часу для быст-
рых процессов. Адаптация существующих моде-
лей к новым сортам или погодным условиям тре-
бует значительных усилий и времени [16–21]. Та-
ким образом, разработка новых гибких моделей,
которые легко могут адаптироваться к новому
сорту, остается актуальной задачей.

В данной работе предложена сетевая марков-
ская модель прогнозирования важного феноти-
пического признака TSW (thousand seed weight –
вес тысячи семян) у генотипов нута, которая ис-
пользует предварительно отобранные снипы (од-
нонуклеотидные полиморфизмы) и погодные
данные за 5 суток до и 20 суток после посева, та-
кие как минимальная и максимальная температу-
ры, количество осадков, влажность, инфракрас-
ное излучение и длина светового дня.

СЕТЕВАЯ МАРКОВСКАЯ МОДЕЛЬ
Сетевую марковскую (англ. Markov Brain) мо-

дель можно считать классом нейронной сети [22].
От классической нейронной сети данная модель
отличается тем, что, в отличие от слоев нейрон-
ной сети, в котором каждый узел выполняет одну
и ту же функцию, марковская сетевая модель
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состоит из отдельных компонент, называемых
вентилями, каждый из которых может вести себя
по-разному. Модель состоит из буфера данных,
называемых ячейками модели, и вентилей, кото-
рые принимают значения из одних ячеек и воз-
вращают в другие. Одной из особенностей дан-
ной модели является возможность моделировать
процесс во времени. Так, модель последователь-
но получает на вход данные из разных временных
промежутков. Вентили могут быть двух типов: де-
терминированными или вероятностными. Пове-
дение вентиля определяется логической табли-
цей, которая устанавливает правила получения
выходных значений из входных, для вероятност-
ных вентилей определяются вероятности кон-
кретных выходов.

Программная реализация разработана на ос-
нове пакета с открытым исходным кодом [23], в
который были внесены модификации для опре-
деления типа вентиля в оптимизируемых пара-
метрах, благодаря чему можно использовать раз-
ные типы вентилей в одной модели, а также было
запрещено чтение из выходных ячеек, чтобы
«подтолкнуть» вентили к более частому исполь-
зованию памяти. Оптимизация сетевой марков-
ской модели производилась с помощью генетиче-
ского алгоритма, реализованного в пакете pygad
[24]. Программный код разработки доступен по
адресу https://gitlab.com/dmitry-maltsov/mb-
chickpea.

После того как модель построена, происходит
череда активаций модели. При каждой активации
во входные ячейки записываются входные дан-
ные – в рамках данной работы генетические мар-
керы и погодные факторы. Ввиду того, что модель
оперирует только битами, исходные данные кате-
горизируются. Так, вместо подачи на вход снипа
Ca4_11241316_G_A со значением 2, означающим,
что замена произошла в обеих хромосомах, пода-
ется три значения – False, False, True. Первое зна-
чение обозначает что утверждение
«Ca4_11241316_G_A равно 0» ложное, второе, что
«Ca4_11241316_G_A равно 1» тоже ложное, и, на-
конец, третье, что «Ca4_11241316_G_A равно 2»
правдиво. Данные о погоде категоризируются
другим образом. Каждый погодный фактор
разбивается на 5 равных интервалов и каждое
булевое значение, подающееся на вход, отвечает
на вопрос, выше ли реальное значение погодного
фактора левой границы соответствующего ин-
тервала». Например, значения разбиения для
T2M_MAX равны 19.35, 20.88, 22.4, 23.92 и 25.45,
а значение T2M_MAX в двадцать пятые сутки,
равное 22.04, представляется в виде True, True,
False, False, False (больше 19.35, больше 20.88, не
больше 22.4, не больше 23.92, не больше 25.45).
После того, как записаны входные данные, про-
исходит активация вентилей – они читают дан-
ные по своим входным индексам (из памяти или

из входных ячеек) и записывают значения по сво-
им выходным индексам (в память или в выход мо-
дели), руководствуясь своими таблицами. При
следующей активации данные о погоде заменятся
на данные следующего дня, генетические данные
не меняются. Всего происходит 25 активаций, по
одной активации на каждый день. После прохож-
дения всего цикла активаций значения, получив-
шиеся в выходных ячейках, считаются оконча-
тельным выходом модели и определяют предска-
зание фенотипа нута.

ОБРАЗЦЫ РАСТЕНИЙ И ПОЛЕВЫЕ 
ИССЛЕДОВАНИЯ

407 образцов нута Cicer arietinum, собранных в
Эфиопии, Ливане, Марокко, Турции, Индии, Уз-
бекистане и Средиземноморском регионе, были
фенотипированы на Кубанской опытной стан-
ции ВИР в 2016 г. В течение вегетационного пе-
риода были измерены 36 фенологических, мор-
фологических, агрономических и биологических
дескрипторов. Подробная информация об экспе-
риментах по фенотипированию, генотипирова-
нии и последующем анализе, в результате кото-
рых было получено 6642 снипа, была представле-
на в работе [25].

В этой работе создана модель признака про-
дуктивности нута, а именно – массы тысячи се-
мян (TSW); этот признак варьируется от 110 до
440 г.

ОТБОР СНИПОВ
Так как 6642 снипа ‒ это слишком много для

построения модели, был проведен их отбор алго-
ритмом градиентного бустинга, а точнее – его ре-
ализацией XGBoost [26]. Градиентный бустинг
представляет собой метод машинного обучения,
применяемый для решения задач классификации
и регрессии. Он основан на генерации случайно-
го леса – ансамбля слабых моделей для предска-
зания деревьев решений. На каждом этапе вычис-
ляются ошибки предсказаний уже существующе-
го ансамбля на обучающей выборке. Следующая
модель, добавляемая в ансамбль, будет предска-
зывать эти ошибки. Добавляя предсказания но-
вого дерева к предсказаниям существующего ан-
самбля, мы уменьшаем среднюю ошибку модели.
Новые деревья продолжают добавляться в ан-
самбль до тех пор, пока либо снижается ошибка,
либо пока не достигнут критерий остановки.

Оптимизацию градиентного бустинга прово-
дили с использованием k-fold кросс-валидации с
n повторами. Параметры кросс-валидадии: k = 10,
n = 3. Помимо этого, на каждой итерации процес-
са кросс-валидации применялся поиск по сетке
оптимальных параметров случайного леса – чис-
ла деревьев m и максимальной глубины отдельно-
го дерева d.
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В результате была получена модель с коэффи-
циентом детерминации R2 = 0.65. Основываясь
на вычислении примеси Джини как важности
предиктора, отобрали 10 снипов для моделирова-
ния TSW (табл. 1).

ПРОГНОЗИРОВАНИЕ ВЕСА ТЫСЯЧИ
СЕМЯН У ГЕНОТИПОВ НУТА

Построение модели проводили с помощью
процесса кросс-валидации, совмещенного с по-
иском оптимальных гиперпараметров по сетке, в
данном случае подбирались оптимальные пара-
метры типа скрещивания и стратегии отбора ро-
дителей в генетическом алгоритме.

На вход подавали все погодные факторы и
10 отобранных снипов. Параметры сетевой мар-
ковской модели:

– Число входных ячеек 60 (30 для однонуклео-
тидных полиморфизмов и 30 для погоды, по 5 для
каждого фактора);

– Число ячеек памяти 30;
– Число выходных ячеек 16;
– Выход модели переводится в целое число в

десятичной системе и интерпретируется как про-
гнозируемый фенотип.

Параметры генетического алгоритма:
– Размер популяции 50;
– Число поколений 50;
– Длина кодирующей модель последователь-

ности 50000 чисел.
В результате была получена сетевая марков-

ская модель (рис. 1), достаточно точно описыва-
ющая имеющиеся данные (см. рис. 2). Значение

Таблица 1. Cнипы, отобранные с помощью модели
градиентного бустинга

TSW Важность

Ca1_34754596_T_A 0.027955214

Ca2_6085175_G_A 0.061373600

Ca2_6419716_G_T 0.077856764

Ca4_3013266_G_T 0.019178191

Ca4_11240892_C_T 0.029107153

Ca4_12574358_T_A 0.038410958

Ca6_9039600_T_C 0.138557690

Ca6_18267475_C_T 0.023114156

Ca6_42759989_A_G 0.256156770

Ca7_5448007_T_C 0.028858041

Рис. 1. Схема сетевой марковской модели. Входные ячейки для погодных данных о длине дня (DL), осадках (PREC),
влажности (GWE), минимальной (TMIN) и максимальной (TMAX) температурax, инфракрасном излучении (RAD), а
также для снипов (SNP) обозначены 5-угольником, квадратом, 6-угольником, ромбом, 5-угольником, квадратом
соответственно. Вентили (g), ячейки памяти (m) и выходные ячейки (o) — треугольниками, кругами и 8-угольниками
соответственно. Стрелки показывают направление передачи информации. Название ячейки погодных данных
включает порог категоризации фактора. В названии вентиля DET и PROB обозначают детерминированный и
вероятностный соответственно. Название вентелей, входных и выходных ячеек включает порядковый номер объекта
данного типа. Ноль в строке 2 подписи ячейки соответствует начальному состоянию модели до активации.
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функции ошибки на тестовой выборке составило
2872.93 c коэффициентом корреляции Пирсона
между решением и тестовыми данными, равным
0.83, Р = 1.9 · 10−11.

ИССЛЕДОВАНИЕ ВЛИЯНИЯ РАЗЛИЧНЫХ 
ФАКТОРОВ НА ТОЧНОСТЬ МОДЕЛИ

Использование математических моделей поз-
воляет выявить факторы, наиболее влияющие на
точность прогнозов. Для оценки важности каж-
дого фактора из имеющихся в наборе данных бу-
дем применять метод пермутации, в котором зна-
чения оцениваемого фактора переставляются
между наблюдениями. Важность фактора оцени-
вается по изменению ошибки решения модели.

Согласно полученным результатам, можно
сделать вывод о том, что максимальное влияние

оказывает инфракрасное излучение и минималь-
ная температура, для которых среднее изменение
ошибки по 100 пермутациям составило 294.996 и
130.797 соответственно, при небольших значени-
ях дисперсии – 1.63 и 0.95 соответственно
(табл. 2).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
Использование математических моделей для

прогнозирования хозяйственно ценных характе-
ристик растений, таких как связанный с продук-
тивностью вес тысячи семян, закладывает науч-
ную основу селекционного улучшения сортов в
условиях глобальных изменений климата. 

В данной работе с использованием генетиче-
ского алгоритма и кросс-валидации была постро-
ена сетевая марковская модель в составе 26 венте-
лей, из них 7 вероятностные, 60 входных ячеек, 30
ячеек памяти и 16 выходных ячеек. Расчеты по
имеющимся экспериментальным данным пока-
зали высокую точность моделирования.

Полученные результаты о влиянии погодных
факторов, в целом, согласуются с ранее опубли-
кованными данными [21, 27, 28], однако понима-
ние роли температуры и продолжительности дня
в адаптации к различным типам среды обитания
все еще неполное и требует дальнейших исследо-
ваний для проверки модельных решений [29].

ВЫВОДЫ
Применение экстремального градиентного бу-

стинга для отбора заданного числа важных од-
нонуклеотидных полиморфизмов позволило
разработать сетевую марковскую модель для

Рис. 2. Сравнение решения модели с данными для обучающей и тестовой выборок. Каждая точка соответствует одному
экземпляру, по оси абсцисс отложено измеренное значение признака TSW, по оси ординат — решение модели. Для
наглядности сплошной линией показана биссектриса угла.

Таблица 2. Важность погодных факторов

Фактор
Среднее 

изменение 
ошибки

σ2

Мин. температура 130.797 0.95

Макс. 
температура 1.103 1.29

Кол-во осадков 11.302 2.23

Влажность почвы 1.002 1.04

Инфракрасное 
излучение 294.996 1.63

Длина св. дня 1.671 0.63
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прогнозирования признака TSW нута с учетом
погодных факторов для 5 до и 20 дней после по-
сева.

Точность полученной модели характеризуется
коэффициентом корреляции Пирсона между ре-
шением и данными, равным 0.83.

Показано, что солнечное излучение и мини-
мальная температура оказывают наиболее силь-
ное влияние на прогнозирование признака TSW.
Полученные результаты в общем согласуются с
ранее опубликованными данными.
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 Markov Network Model for Predicting Thousand Seed Weight in Chickpea Genotypes
 D.D. Maltsov*, M.G. Samsonova*, and K.N. Kozlov*
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Predicting yield-related traits such as thousand seed weight (TSW) allows researchers to develop varieties that
achieve maximum efficiency and value under changing climate conditions. In this paper, we propose a Mar-
kov network model for predicting the important phenotypic trait TSW in chickpea genotypes using pre-se-
lected single nucleotide polymorphisms and weather data for 5 days before and 20 days after sowing, such as
minimum and maximum temperatures, precipitation, humidity, infrared radiation, and daylength. The con-
structed model predicts the TSW trait with high accuracy – the Pearson correlation coefficient is 0.83.

Keywords: thousand seed weight, climate factors, chickpea, mathematical modeling, Markov network model




