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Рассмотрен вопрос, почему в динитрозильных комплексах железа, функционирующих в живых ор-
ганизмах в качестве «рабочей формы» эндогенного оксида азота (NO), динитрозильные лиганды
представлены, причем в равном соотношении, нейтральными молекулами NO и их катионной
(NO+) формой? Показано, что такое представление – прямое следствие механизма образования ди-
нитрозильных комплексов железа, протекающего в живых организмах при участии молекул NO,
слабосвязанного двухвалентного железа и тиолсодержащих соединений. Основополагающей стади-
ей этого процесса является реакция диспропорционирования молекул NO, попарно связывающих-
ся с ионом Fe2+. Что касается тиолсодержащих лигандов, их наличие в динитрозильных комплексах
железа обеспечивает стабилизацию катионов нитрозония, появляющихся в этих комплексах в ходе
реакции диспропорционирования молекул NO.
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В настоящее время установлено, что во всех
представителях живого мира: человеке и живот-
ных, растениях и бактериях, — ферментативным
путем продуцируется простейшее химическое со-
единение — оксид азота (NO), функционирую-
щее в живых организмах в качестве одного из
универсальных регуляторов разнообразных био-
логических процессов [1–3]. В организме живот-
ных и человека оксид азота продуцируется в сво-
бодной (несвязанной) форме из L-аргинина с по-
следующим поступлением в соседние клетки и
ткани, т. е. в качестве агента, способного оказы-
вать на них паракринное действие [1].

В связи с высокой реакционной активностью
NO как свободно-радикальной молекулы встает
вопрос, каким образом NO способен реализовать
свое паракринное действие, другими словами,
каким образом молекулы NO достигают мишени
своего действия в соседних клетках и тканях –
фермента гуанилатциклазы, сохраняясь в исход-

ной, «интактной» форме, способной активиро-
вать этот фермент?

Большинство исследователей полагает [4, 5],
что основным агентом, взаимодействие с кото-
рым может привести к гибели NO, является ани-
он супероксида – также свободно-радикальная
молекула, диффузионно контролируемая реак-
ция с которой приводит к превращению NO в
анион пероксинитрита (ONOO–) (реакция 1):

NO + O2
– = ONOO–. (1)

При последующем протонировании этот ани-
он распадается на высокотоксичный свободный
гидроксильный радикал и диоксид азота [5]. Тем
не менее, в норме из-за низкой концентрации су-
пероксида такого рода путь исчезновения NO не
существенен. Более существенный вклад во внут-
риклеточную гибель NO может вносить его окис-
ление кислородом в реакции 2:

2 NO + O2 = 2 NO2. (2)

В чисто водной среде эта реакция невозможна
из-за нарушения характерного для химических
реакций закона сохранения спина – равенства

Сокращения: ДНКЖ – динитрозильные комплексы желе-
за, М-ДНКЖ – моноядерная форма динитрозильных ком-
плексов железа, Б-ДНКЖ – биядерная форма динитро-
зильных комплексов железа.
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спина реагентов и продуктов реакции [6]. Для
этой реакции сумма спинов реагентов равна 2, а
сумма спинов продуктов равна 1 (с учетом спина
NO S = 1/2, кислорода S = 1 и NO2 S = 1/2). Тем
не менее, во внутриклеточной среде эта реакция
может реализоваться в присутствии спиновых ка-
тализаторов — парамагнитных комплексов желе-
за и меди, способных понизить спин молекулы
кислорода до 0 [6]. Требует исследования вопрос,
в какой мере это может сказаться на уровне со-
храняющихся молекул NO, не вступающих в ре-
акцию (2).

Наконец, третий возможный сценарий гибели
NO – включение молекул NO, как свободно-ра-
дикальных агентов, в реакцию диспропорциони-
рования (реакцию (3)):

2NO = NO+ + NO–, (3)

в ходе которой в результате переноса электрона с
одной молекулы NO на другую происходит вза-
имное одноэлектронное окисление-восстановле-
ние двух молекул NO [7]. Как показано в работах
[8, 9], в водной фазе в результате гидролиза появ-
ляющиеся в реакции (3) ионы — катион нитрозо-
ния (NO+) и анион нитроксила (NO–) превраща-
ются в соответствии с экспериментально наблю-

давшейся реакцией (4) [10] в диоксид азота (NO2)
и закись азота (N2O):

3NO = NO2 + N2O. (4)

Превращение продуктов реакции 3 в диоксид
и закись азота в газовой фазе происходит при на-
личии в ней капелек воды, обеспечивающей гид-
ролиз катионов нитрозония и анионов нитрокси-
ла, причем лишь при высоких давлениях NO (де-
сятках атмосфер), достаточных для сближения
молекул NO и тем самым реализации реакций (3)
и (4), приводящих к устранению NO из газовой
фазы. Что касается водных растворов NO, реак-
ция диспропорционирования молекул NO может
протекать и при небольших концентрациях NO в
растворе. В этом случае необходимое для реакции
сближение молекул NO может обеспечиваться
попарным связыванием этих молекул с ионами
двухвалентного железа, известных своим высо-
ким сродством к NO [11]. В соответствии со схе-
мой 1 [8, 9, 12, 13], в результате диспропорциони-
рования молекул NO, т. е. переноса электрона по
d-орбиталям железа от одной молекулы NO к дру-
гой, возникает динитрозильный комплекс железа
(ДНКЖ), содержащий в лигандной сфере (наряду
с анионным L–-лигандами) катион нитрозония и
анион нитроксила:

Схема 1. Предлагаемый механизм образования ДНКЖ, инициируемый реакцией диспропорционирования 
молекул NO, связанных с Fe2+.

Последний после протонирования превраща-
ется в нейтральную молекулу нитроксила, выхо-
дящую из комплекса с последующим высвобож-
дением из пары молекул нитроксила закиси азота
и воды. Лигандное место аниона нитроксила за-
нимает третья молекула NO, что и приводит к об-
разованию ДНКЖ, содержащего нейтральную
молекулу NO и катион нитрозония (cхема 1).

Что касается гидролиза этого катиона, т. е. воз-
можности его взаимодействия с анионом гидрок-
сила с последующим превращением катиона нит-
розония при нейтральных значениях рН в анион
нитрита – процесса, приводящего в итоге к рас-
паду ДНКЖ, – его реализация зависит от приро-
ды анионных L–-лигандов этих комплексов, а
именно, от их π-донорной активности [13]. Оче-
видно, что при такого рода высокой активности

перенос электронной плотности с этих лигандов
на сильный π-электронный акцептор – катион
нитрозония – должен приводить к снижению по-
ложительного заряда на этом ионе, блокируя тем
самым его гидролиз. В результате этот нитрозиль-
ный лиганд не превращается в нитрит, чем и
обеспечивается стабилизация ДНКЖ, т. е. сохра-
нение в его составе как молекулы NO, так и кати-
она нитрозония [14].

Такое стабилизирующее действие на ДНКЖ
оказывает включение в их состав тиолсодержа-
щих лигандов как соединений, характеризую-
щихся высокой π-донорной активностью. Имен-
но такого рода ДНКЖ, описываемые
формулой [(RS–)2Fe2+(NO)(NO+)]+, возникают
в живых организмах, в частности, в тканях живот-
ных и человека, обеспечивая стабилизацию и
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паракринное действие появляющегося в них NO,
а также образующихся в ходе образования ДНКЖ
катионов нитрозония.

Именно эти ДНКЖ были впервые обнаруже-
ны нами по характерному для них сигналу ЭПР с
g⊥ = 2.04, g|| = 2.014, gср = 2.03 («сигналу 2.03») сна-
чала в дрожжевых клетках, а затем в тканях живот-
ных еще в 1960-е годы [15–17], что явилось первым
свидетельством того, что в этих биосистемах может
в ходе метаболических процессов возникать оксид
азота. Последующие исследования показали, что по
крайней мере в печени животных около 70% возни-
кающего в ней оксида азота включается в ДНКЖ,
причем преимущественно не в его моноядерную
(М-ДНКЖ) форму, характеризующуюся представ-
ленной выше формулой, а в его ЭПР-неактивную
биядерную (Б-ДНКЖ) форму, представляемую
формулой [(RS–)2Fe2+

2-(NO)2(NO+)2]2+ [18]. В хи-
мической терминологии эта форма описывается
как тиоэфир красной соли Руссена. Диамагне-
тизм этого комплекса обусловлен спариванием
спинов (S = 1/2) железо-динитрозильных
[Fe2+(NO)(NO+)]3+-фрагментов ДНКЖ через
серные (тиоловые) мостики двух тиолсодержа-
щих лигандов. Поскольку биологическая актив-
ность обнаруженных ДНКЖ полностью совпала с
аналогичной активностью эндогенного NO (бо-
лее правильно, по-видимому, следует говорить о
системе эндогенного NO, включающей, кроме
самого молекулярного NO, разнообразные его
соединения и производные), нами был сделан
вывод, что ДНКЖ с тиолсодержащими лиганда-
ми, возникающие в живых организмах, в частно-
сти в тканях животных и человека, следует рас-
сматривать в качестве «рабочей формы» NO [19].
Его включение в эти комплексы обеспечивает,
как уже было сказано, стабилизацию NO в живых
организмах, а также его превращение в катион
нитрозония. В результате при распаде ДНКЖ
(например, при удалении из комплексов тиолсо-
держащих лигандов) из этих комплексов высво-
бождаются как нейтральные молекулы NO, так и
их катионная форма, причем в равном количе-
ственном соотношении.

Таким образом, именно связывание молекул
NO и тиолсодержащих лигандов c Fe2+ в живых
организмах приводит к образованию стабильных
ДНКЖ, чем и достигается стабилизация и пере-
нос NO (а также катионов нитрозония) между
клетками и тканями, т. е. паракринное действие
NO (и NO+) в организме животных и человека.
Роль реакции диспропорционирования молекул
NO в этих процессах – основополагающая!

В пользу предлагаемого нами механизма обра-
зования ДНКЖ, начальным этапом которого, как
показано на схеме 1, является диспропорциони-

рование молекул NO, попарно связывающихся с
Fe2+, свидетельствуют три группы эксперимен-
тально полученных фактов. 

Первая группа фактов: сербскими исследова-
телями [20] установлено, что образование ДНКЖ
в реакции газообразного NO, Fe2+и анионных ли-
гандов (L−) действительно сопровождается (в со-
ответствии со схемой 1) высвобождением закиси
азота в концентрации, эквимолярной концентра-
ции возникающих М-ДНКЖ. Теми же исследо-
вателями было обнаружено образование
HNO/NО, как предшественников закиси азота,
при контакте NO c Fe-содержащей супероксид-
дисмутазой [21]. Аналогичные продукты были об-
наружены и американскими исследователями
при образовании водосодержащих нитрозильных
комплексов железа [22].

Вторая группа фактов была получена француз-
скими исследователями, показавшими, что в об-
разовании одного М-ДНКЖ участвуют (в полном
соответствии со схемой 1) три молекулы NO [23].
Что касается равного соотношения NO и NO+ в
составе М- и Б-ДНКЖ, получаемых по схеме 1,
нами было показано, что при кислотном распаде
этих комплексов из одного железо-динитрозиль-
ного фрагмента этих комплексов в форме NO+

высвобождается ровно половина их нитрозиль-
ных лигандов. Другая их половина, очевидно, вы-
свобождается в форме нейтральных молекул NO
[24].

Наконец, третья группа фактов свидетельству-
ет о том, что ДНКЖ могут выступать в качестве
доноров катионов нитрозония. Это результаты
исследований американских и китайских иссле-
дователей, продемонстрировавших образование
S-нитрозотиолов (RS−NO) при участии катионов
нитрозония, высвобождающихся из ДНКЖ [25,
26], а также наших исследований [24], в которых
было уточнено, что такое образование происхо-
дит лишь при концентрации не связанных с
ДНКЖ тиолов, не более чем в два раза превыша-
ющей содержание железо-динитрозильных фраг-
ментов в составе ДНКЖ (в этих опытах мы имели
дело с ДНКЖ с тиолсодержащими лигандами).

К третьей группе указанных фактов следует от-
нести и результаты наших исследований, в кото-
рых высвобождение катионов нитрозония из
ДНКЖ с тиолсодержащими лигандами достига-
лось их обработкой производными дитиокарба-
мата в соответствии со схемой 2 [27]:
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Схема 2. Превращение моно- и биядерных ДНКЖ с тиолсодержащими лигандами в мононитрозильные 
комплексы железа с дитиокарбаматом, сопровождаемое высвобождением в среду катиона нитрозония..

При такой обработке производные дитиокар-
бамата перехватывают на себя из железо-ди-
нитрозильных фрагментов в ДНКЖ их мононит-
розильные (Fe2+−NO) группы с образованием
мононитрозильных комплексов железа с произ-
водными дитиокарбамата. В результате нейтраль-
ные молекулы NO, входившие в состав ДНКЖ,
оказываются включенными в эти комплексы, бо-
лее устойчивые, чем ДНКЖ и, как говорится,
«выходят из игры», т. е. перестают сами по себе
воздействовать на внутриклеточные компонен-
ты, тогда как второй нитрозильный лиганд в
ДНКЖ – катион нитрозония – высвобождается
при этом в свободной форме и может либо
превратиться в результате гидролиза в анион
нитрита, либо в присутствии тиолов образовать
RS−NO.

Такого рода неконтролируемое связывание
NO+ с критически важными для метаболизма
тиолсодержащими белками может приводить к
гибельному действию этих катионов на клетки и
ткани, что и наблюдалось нами и зарубежными
авторами в экспериментах при совместной обра-
ботке клеток и тканей Б-ДНКЖ с глутатионом и
диэтилдитиокарбаматом или N-метил-D,L-глю-
каминдитиокарбаматом [27–29]. Более того, по-
следовательная ингаляция сирийским хомячкам,
зараженным вирусом SARS-CoV-2, распыленных
растворов этих агентов приводила к подавлению
у хомячков размножения этого вируса [30, 31]. Та-
ким образом появилась возможность создания
лекарственных средств для лечения вирусных за-
болеваний респираторного тракта.

Итак, вышеизложенный материал показывает,
что эндогенный оксид азота, синтезируемый в
живых организмах ферментативным путем, свя-
зывается в целях сохранения с ионами слабосвя-

занного (свободного) железа (по паре молекул
NO на один ион Fe2+) с последующим диспропор-
ционированием этих молекул, в результате чего в
присутствии тиолсодержащих (RS–) лигандов об-
разуется парамагнитный М-ДНКЖ, выступаю-
щий в качестве донора как нейтральных молекул
NO, так и катионов нитрозония, и способный в
силу своей достаточной устойчивости переносить
эти агенты на значительные расстояния, т. е. реа-
лизовать паракринное действие как NO, так и
NO+.

Что могло бы случиться, если бы Природа «не
придумала» такого способа стабилизации эндо-
генного NO? Ответ на этот вопрос дают результа-
ты наших исследований и результатов других ис-
следователей по изучению влияния ингаляции
газообразного NO по респираторному пути на
давление крови в организме животных и челове-
ка. Оказалось, что эта процедура снижает давле-
ние крови только в малом круге, т. е. в легких, не
влияя на аналогичный показатель в большом кру-
ге циркуляции [32–35]. При этом, судя по появ-
лению нитрозильных комплексов гемоглобина,
молекулы NO через легкие попадали в кровяное
русло и тем не менее, в отличие от эндогенного
NO, включившегося в ДНКЖ, не влияли на дав-
ление крови в большом круге циркуляции [34].
Другими словами, газообразный NO, поступав-
ший в организм животных и человека, не спосо-
бен был вызывать расслабление кровеносных со-
судов, за исключением сосудов, функционирую-
щих в легких. Что же касается способности
молекулярного NO влиять на тонус изолирован-
ных сосудов, т. е. in vitro, эксперименты показали
высокую вазодилататорную активность этого
агента [36]. Таким образом, при поступлении в
кровь что-то происходило с молекулами NO,
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причем блокировалась их способность расслаб-
лять кровеносные сосуды и тем самым понижать
артериальное давление. Естественно было пред-
положить, что «выход этих молекул из игры» был
обусловлен их связыванием с гемоглобином с по-
следующим окислением до нитрита/нитрата. Од-
нако эксперимент показал, что, например, у доб-
ровольцев исчезновение в крови поступавшего в
нее NO не было обусловлено только взаимодей-
ствием NO с гемоглобином. Значительная его
часть, особенно при поступлении в кровь потока
NO с высокой концентрацией, исчезала в крови,
не связываясь с гемоглобином [34]. Было сделано
предположение, что это исчезновение могло быть
обусловлено окислением NO в диоксид азота с
последующим образованием триоксида азота в
реакции NO и NO2 [35[.

Как уже указывалось выше, эффективное
окисление NO до NO2 в крови могло реализовать-
ся из-за наличия в крови парамагнитных ком-
плексов железа и меди, выступавших в качестве
спиновых катализаторов указанного окисления
(снимавших спиновой запрет этой реакции).
Превращение NO в триоксид азота, одна из резо-
нансных структур которого может быть представ-
лена как аддукт NO+ и NO2

–, должно было в ре-
зультате гидролиза этого аддукта приводить к по-
явлению в крови катионов нитрита либо при
введении в кровь тиолов приводить к появлению
в ней молекул RS−NO, характеризующихся вазо-
дилататорной (гипотензивной) активностью.
Действительно, при внутривенном введении
крысам тиолов (глутатиона или цистеина) в ходе
ингаляции им газообразного NO такая актив-
ность была обнаружена. Гипотензивный эффект
исчезал при остановке ингаляции NO этим жи-
вотным [35]. Отсюда следует справедливость вы-
сказанного выше предположения о том, что ис-
чезновение в крови NO при его ингаляции обу-
словлено как связыванием NO с гемоглобином,
так и его окислением кислородом до NO2 с после-
дующим превращением в катион нитрозония.

Таким образом, этот результат еще раз показы-
вает, что оксид азота в свободной форме не спо-
собен in vivo имитировать биологическую актив-
ность, характерную для системы эндогенного
NO. Такая имитация реализуется только для
ДНКЖ с тиолсодержащими лигандами, функци-
онирующими в организме животных и человека,
а возможно и в других живых организмах в каче-
стве «рабочей формы» эндогенного NO. По-
скольку решающей стадией в синтезе этих ком-
плексов является реакция диспропорционирова-
ния связанных с ионом Fe2+ молекул NO, и
учитывая роль NO, а следовательно и ДНКЖ с
тиолсодержащими лигандами как универсальных
регуляторов разнообразных биологических про-

цессов, можно говорить о не менее универсаль-
ной роли реакции диспропорционирования мо-
лекул NО в реализации процессов жизнедеятель-
ности живых организмах, обитающих как в
аэробных, так и анаэробных условиях.

В заключение отметим, что как было установ-
лено в последнее время, реакция диспропорцио-
нирования молекул NO была открыта еще в
XVIII веке одним из основоположников совре-
менной химии великим английским ученым
Дж. Пристли [37].
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 Essential Role of Disproportionation Reaction of Nitric Oxide Molecules 
in Their Functioning Mechanism in Living Organisms
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The article considers the question of why nitrosyl ligands in dinitrosyl iron complexes with thiol-containing
ligands which are proposed as a “working form” of endogenous nitric oxide (NO) in living organisms are pre-
sented equally in dinitrosyl iron complexes as NO molecules and nitrosonium (NO+) cations? It has been
shown that such type of presentation is determined by the mechanism of dinitrosyl iron complexes formation
from NO molecules, loosely bound bivalent iron and thiol-containing compounds in living organisms. The
disproprtionation reaction between NO molecules bound in pairs with Fe2+ ion plays the main role in this
process. Regarding thiol-containing ligands they ensure the stabilization of nitrosonium cations arising in
NO disproprtionation reaction.
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