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В настоящее время изометрические упражнения широко используются для увеличения мышечной
силы и выносливости. Их также используют в протоколах реабилитации при ограниченной по-
движности суставов после операций эндопротезирования. В работе рассмотрено влияние изомет-
рических упражнений на морфофункциональные характеристики мышечных клеток, секрецию ци-
токинов клетками мышечной ткани, кровообращение и массоперенос в мышечной ткани, а также
на ремоделирование и восстановление костной ткани. Существующие протоколы ранней реабили-
тации пациентов после эндопротезирования не оптимальны и не учитывают индивидуальные осо-
бенности пациентов. Для разработки эффективных методов ранней реабилитации пациентов после
операций эндопротезирования необходимо знание биофизических основ влияния изометрических
упражнений на процессы регенерации мышечной и костной тканей.
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Упражнения, основанные на изометрическом
напряжении мышц, широко используются для
увеличения мышечной силы и выносливости. Та-
кие упражнения рассматриваются как эффектив-
ная мера борьбы с мышечной атрофией [1–3].
Изометрические упражнения особенно актуаль-
ны для тех, кому противопоказаны сильные на-
грузки на суставы и динамические упражнения.
По этой причине изометрические упражнения
используют в протоколах реабилитации при огра-
ниченной подвижности суставов после операций
эндопротезирования [4–6]. 

Большинство авторов единодушны в том, что
реабилитация должна начинаться сразу после
операции по замене тазобедренного сустава
(ТБС) [7–9]. Ранняя реабилитация пациентов в
первые две недели после эндопротезирования су-

ставов представляется актуальной для всего
последующего реабилитационного процесса. В
первые послеоперационные сутки наблюдается
шоковое состояние мышц оперированной конеч-
ности, что подтверждается, например, повыше-
нием миоглобина в крови в 20–30 раз. После
эндопротезирования ТБС наблюдается потеря
мышечной силы и функциональной работоспо-
собности, а также долгосрочные послеопераци-
онные нарушения [10–12]. Эти дефициты вызы-
вают нарушение функциональных показателей,
таких как скорость ходьбы, подъем со стула,
асимметрия при ходьбе. На данный момент не су-
ществует ясного понимания, как уменьшить эти
дисфункции, а известные стратегии и утвержден-
ные в медицине руководства и рекомендации по
реабилитации после эндопротезирования ТБС
основаны преимущественно на эмпирическом
опыте [9]. Тем не менее, функциональную недо-
статочность мышц в ближайшем периоде после
эндопротезирования и медленное восстановле-
ние отмечают практически все авторы, занимаю-
щиеся этой проблемой. Некоторые авторы дела-
ют вывод, что более быстрое восстановление

Сокращения: ТБС – тазобедренный сустав, ТЦМ – тяже-
лыe цепи миозина, LIF – фактор ингибирования лейкоза,
NO – окись азота, NOS – синтаза окиси азота, NFAT –
ядерный фактор активации Т-клеток, VEGF – эндотели-
альный ростовой фактор, FGFs – факторы роста фиброб-
ластов, TGF-β – трансформирующий ростовой фактор β,
MMPs – матриксные металлопротеиназы.

УДК 61:577.3

МЕДИЦИНСКАЯ БИОФИЗИКА



БИОФИЗИКА  том 70  № 1  2025

БИОФИЗИЧЕСКИЕ ОСНОВЫ ПРИМЕНЕНИЯ ИЗОМЕТРИЧЕСКИХ УПРАЖНЕНИЙ 199

силы мышц тазового пояса происходит в течение
первых 2 месяцев после операции, а затем отме-
чается замедление прироста силы. Это подталки-
вает к мысли о необходимости более вниматель-
ного отношения к реабилитации пациентов в
первый месяц после эндопротезирования ТБС [7,
12]. В раннем послеоперационном периоде край-
не важно начать тренировку мышечной силы из-
за атрофии мышц в первые недели [13]. Отмечает-
ся, что мышечная сила снижается примерно на
4% в день в течение первой недели иммобилиза-
ции [14]. Следует признать, что существующие
протоколы ранней реабилитации пациентов по-
сле эндопротезирования не оптимальны и не учи-
тывают индивидуальные особенности пациентов.
Не так давно считалось, что на ранней стадии ре-
абилитации необходимо минимизировать на-
грузки. Остается неясно, в какой мере повыше-
ние изометрических нагрузок на раннем этапе
после эндопротезирования может способствовать
повышению эффективности реабилитации. Со-
ответственно, остается актуальным вопрос с вы-
бором самих изометрических упражнений и про-
токолов их применения для ранней реабилитации
пациентов, которые эффективно усиливали бы
регенеративные процессы в мышцах, связках и в
костной ткани [15]. Для научно обоснованного
применения изометрических упражнений необ-
ходимо знание о механизмах их действия. Не-
смотря на многочисленные исследования в обла-
сти мышечного сокращения, наши представле-
ния об эффективности ранней реабилитации
после эндопротезирования остаются неполными
для понимания активации регенеративных про-
цессов с помощью изометрического напряжения
мышц. В данной работе приводятся современные
представления о механизмах воздействия изомет-
рических упражнений на регенеративные про-
цессы в организме. 

ВЛИЯНИЕ ИЗОМЕТРИЧЕСКИХ 
УПРАЖНЕНИЙ 

НА МОРФОФУНКЦИОНАЛЬНЫЕ 
ХАРАКТЕРИСТИКИ МЫШЕЧНЫХ КЛЕТОК

При воздействии изометрических упражнений
на скелетные мышцы, как правило, вовлекаются
как медленные мышечные волокна I типа, экс-
прессирующие изоформу I тяжелой цепи миози-
на (ТЦМ), так и быстрые мышечные волокна II
типа, экспрессирующие изоформу II ТЦМ, реа-
лизуя эффект устойчивого сокращения, или тета-
нуса всех двигательных единиц [16]. «Медленная»
изоформа I ТЦМ имеет более низкую АТФазную
активность, чем «быстрые» изоформы II этого
белка. Быстрые мышечные волокна подразделя-
ют на 2 типа: промежуточные, или окислительно-
гликолитические (содержат изоформу IIA ТЦМ),
и быстрые гликолитические (содержат изофор-

му IIX ТЦМ в мышцах человека). Процентное со-
отношение быстрых и медленных волокон может
различаться между людьми и в различных мыш-
цах человека. Воздействие физических упражне-
ний может изменить соотношение между типом I
и II волокон в сравнительно небольшом диапазо-
не, от 2 до 10%, в отличие от больших изменений
(50% и более) в соотношении подтипов IIA и IIX
[17]. Известно, что быстрые гликолитические во-
локна содержат небольшое количество миогло-
бина и митохондрий, сравнительно немного кро-
веносных капилляров, а АТФ вырабатывается в
них главным образом за счет гликолиза [16]. Эти
мышцы сокращаются сильно и быстро и исполь-
зуются при кратковременных интенсивных анаэ-
робных движениях. Медленные волокна имеют
меньшую скорость сокращения в сравнении с
быстрыми волокнами, содержат много митохон-
дрий, большое количество миоглобина и крове-
носных капилляров, а продукция АТФ происхо-
дит в них главным образом путем аэробного кле-
точного дыхания. Медленные мышечные
волокна обладают высокой степенью устойчиво-
сти к утомлению и способностью поддерживать
длительное сокращение мышц. Промежуточные
волокна содержат больше гемоглобина и мито-
хондрий, чем гликолитические, но меньше, чем
медленные, и используются в широком диапазо-
не деятельности, требующей как выносливости,
так и силы в определенных соотношениях. 

Механизмы адаптивной «трансформации»
мышечных волокон из одного типа в другой до
сих пор являются предметом дискуссий. При
этом всегда силовые упражнения в изометриче-
ском режиме стимулируют продукцию миофиб-
риллярных белков, ответственных за мышечную
гипертрофию, кульминацией которой является
увеличение сократительной силы [18]. Трениров-
ка на выносливость, к которой также относятся
изометрические упражнения большой продолжи-
тельности, вызывает увеличение содержания в
мышце медленных окислительных волокон. В
модели влияния изометрических упражнений на
мышцы спины крысы было показано, что такие
упражнения в течение 5 недель приводили к уве-
личению количества промежуточных волокон
(+50%), устойчивых к утомлению, и к уменьше-
нию количества быстрых гликолитических воло-
кон (–17%) в экспериментальной группе по срав-
нению с контрольной. Также в эксперименталь-
ной группе было показано увеличение мышечной
силы (+74%) [17].

Состояние тетануса мышц при выполнении
изометрических упражнений наблюдается в том
случае, когда стимулирующие нервные импульсы
поступают на мышечные волокна с высокой ча-
стотой, не менее 20 Гц. Одним из ключевых вто-
ричных мессенджеров в инициации сокращения
двигательных единиц является внутриклеточный
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кальций. Его средняя концентрация в саркоплаз-
ме в интервалах между стимулами может оста-
ваться высокой (до 2 мкМ, а в расслабленном со-
стоянии − около 0.1 мкМ), так как кальциевый 
насос не успевает возвращать ионы кальция меж-
ду импульсами в саркоплазматический ретикулум 
[19]. Двигательные единицы мышечной ткани со-
стоят из одного мотонейрона и группы иннерви-
руемых им мышечных волокон. Типичные мед-
ленные двигательные единицы включают волок-
на типа I, которые имеют диаметр около 50 мкм и 
активируются нервными импульсами с частотой 
10–25 Гц. Промежуточные двигательные едини-
цы включают волокна типа IIA, которые имеют 
диаметр около 80 мкм и активируются импульса-
ми с частотой 25–50 Гц. Быстрые двигательные 
единицы включают волокна типа IIX диаметром 
около 100 мкм и активируются импульсами ча-
стотой 50–100 Гц [16, 19]. Разные частоты актива-
ции мотонейронов  определяют разные концен-
трации внутриклеточного Ca2+ в отдельных мы-
шечных волокнах. На основании измерений,
выполненных в изолированных отдельных мы-
шечных волокнах, эти частоты активации соот-
ветствуют средней внутриклеточной концентра-
ции Ca2+ в саркоплазме в диапазонах 0.1–
0.3 мкМ для медленных двигательных единиц,
0.5–0.8 мкМ для промежуточных двигательных
единиц, и 1–2 мкМ для быстрых двигательных
единиц [19, 20]. Внутриклеточная концентрация
ионов Ca2+ в саркоплазме составляла в покое, со-
гласно этим работам, 0.03–0.05 мкМ, хотя в дру-
гих работах указано около 0.1 мкМ [16]. Авторами
делается вывод о том, что саркоплазматическая
концентрация ионов кальция и его осцилляции
при физических упражнениях определяют силу
сокращения в различных мышечных волокнах,
клеточную энергетику и экспрессию генов в них
[19, 20]. 

Продолжительные тренировки на выносли-
вость вызывают увеличение содержания мито-
хондриального белка и дыхательной способности
мышечных волокон, придавая им повышенный
окислительный профиль [18]. Такие эффекты, ве-
роятно, реализуются, включая множество сиг-
нальных каскадов и транскрипционных факто-
ров, в частности кальцинейрин и кальций-каль-
модулин-зависимую киназу, транскрипционный
регулятор генов, вовлеченных в энергетический
метаболизм (PGC-1α), который является регуля-
тором биогенеза митохондрий, а также рецепто-
ры, активируемые пролифераторами пероксисом
(PPARδ) [18]. 

Митохондриальный биогенез – это известный
ответ на аэробные упражнения, он определяется
увеличением количества и объема митохондрий
мышц, а также сопутствующими изменениями в
их функциональной активности [21]. В ответ на

усиление сократительной активности период по-
лураспада митохондриальных белков может
уменьшаться до 1 недели, что примерно в 4 раза
быстрее, чем в состоянии покоя [22]. Через 6 не-
дель тренировок содержание митохондрий в
мышцах увеличивается примерно на 50–100%,
причем это увеличение в волокнах типа IIA боль-
ше, чем в волокнах типа I и типа IIX [23]. Иначе
говоря, волокна типа IIA наиболее пластичны и
адаптивны к физическим упражнениям. Улучше-
ние физической работоспособности за тот же пе-
риод опережает относительно небольшое (обыч-
но 5–20%) увеличение аэробной выносливости
всего тела, измеряемое максимальным потребле-
нием кислорода, и отражает повышение внутрен-
ней окислительной способности мышц, доставку
и использование субстратов в работающей мыш-
це во время последующих упражнений. 

В работе [24] указывается, что дыхательная ак-
тивность митохондрий в мышечной ткани зави-
сит от эффективности физических упражнений,
что свидетельствует о возможности профилакти-
ки старения скелетных мышц. В целом можно
сказать, что изменение морфофункциональных
характеристик мышечной ткани в результате дей-
ствия изометрических упражнений свидетель-
ствует об активации синтетических процессов в
мышечных клетках, о васкуляризации мышечной
ткани, что способно обеспечить ускорение реге-
неративных процессов после операций эндопро-
тезирования.

ИЗОМЕТРИЧЕСКИЕ УПРАЖНЕНИЯ 
АКТИВИРУЮТ СЕКРЕЦИЮ ЦИТОКИНОВ 

КЛЕТКАМИ МЫШЕЧНОЙ ТКАНИ
Известно, что в тканях организма секретиру-

ются белки, пептиды, которые оказывают регуля-
торное действие на клетки организма, вызывают
аутокринные и паракринные эффекты. Мышеч-
ные клетки также способны секретировать пеп-
тидные факторы, цитокины, которые модулиру-
ют функциональное состояние их самих и других
клеток организма, а сократительная активность
мышечных клеток влияет на их секреторную ак-
тивность. По аналогии с адипокинами (цитоки-
нами, секретируемыми адипоцитами) и лимфо-
кинами (цитокинами, секретируемыми лимфо-
цитами), цитокины, секретируемые мышечными
клетками, было предложено называть миокина-
ми [25, 26]. Было обнаружено, что статические и
динамические физические упражнения влияют
на продукцию и секрецию в скелетных мышцах
множества цитокинов, включая интерлейкины
IL-1, IL-6, IL-4 и IL-8, IL-10, IL-15, IL-16,
фактор некроза опухоли (TNF-alpha), фактор
ингибирования лейкоза (LIF) и др. [25–27].
Изменения профиля цитокинов LIF, IL-4, IL-6,
IL-7 и IL-15 может способствовать мышечной
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гипертрофии и миогенезу и вызывать изменения
в составах мышечных белков и мышечных воло-
кон [25]. Известно, что LIF принимает участие в
активации пролиферации миобластов и в регене-
рации скелетных мышц [25, 28]. Активация экс-
прессии генов в мышечных клетках цитокинами
зависит от концентрации окиси азота (NO), кото-
рая повышается при сократительных нагрузках и
рассматривается как один из важных факторов
регуляции перестройки мышечной ткани при фи-
зических упражнениях [25, 29]. В работе [29] го-
ворится, что NO является триггером сигнальных
каскадов в изменениях метаболизма и структур-
ного состава мышечных волокон при физической
нагрузке. Имеются данные, указывающие на то,
что активация фермента нейрональной NO-син-
тазы ограничивает деструктивные процессы в
мышцах [30]. NO влияет на состояние клетки не-
посредственно через сигнальные каскады экс-
прессии генов, связываясь с гемами железосодер-
жащих белков, в частности с простетической
группой гуанилатциклазы, и активирует ее с об-
разованием цГМФ. В свою очередь цГМФ влияет
на цГМФ-зависимую протеинкиназу G и другие
белки и ферменты, активируя нижестоящие пути
сигнализации, или опосредованно через измене-
ние кровообращения, принимая во внимание
свойства этой молекулы как вазодилататора [31]. 

Пик секреции миокинов после физической
нагрузки может варьировать в зависимости от ее
интенсивности и продолжительности. Например,
авторы работы [32], используя серию биопсий
мышц человека, обнаружили, что мышечная экс-
прессия гена IL-6 достигала пика через 8 ч и оста-
валась повышенной через 24 ч после 30-минутно-
го выполнения аэробных физических упражне-
ний. В работе [33] было показано, что мышечный
IL-6 увеличивался через 30 мин после трехчасо-
вого упражнения на разгибание колена и оставал-
ся длительное время повышенным после прекра-
щения упражнений. Физические нагрузки оказы-
вают значительное действие на секрецию
миокинов мышечными клетками при повторных
физических упражнениях. Например, в работе
[34] показано, что воздействие физической на-
грузки может изменить продукцию миокинов и
их секрецию в ответ на такую же нагрузку даже
через 4 недели. Такие данные представляют прак-
тический интерес для формирования методик
физических упражнений и реабилитации. 

Знаний об изменении секреции миокинов в
ответ на изометрические упражнения в настоя-
щее время недостаточно для детального понима-
ния в этой области [25, 34, 35], однако имеются
данные, которые указывают на отличие влияния
динамических и статических (изометрических)
упражнений на секрецию цитокинов.

Например, было показано, что динамические
упражнения вызывали увеличение содержания
IL-6 и снижение IL-15 в плазме крови мышей и
не влияли на концентрацию хемокина CXCL1.
У тренированных мышей эффекты однократной
динамической нагрузки на концентрацию IL-6 и
IL-15 в плазме усиливались, а также отмечалось
снижение концентрации CXCL1. Статические
нагрузки, в сравнении с динамическими, оказы-
вали похожее, но более выраженное влияние на
концентрацию IL-6 и IL-15 в плазме, однако кон-
центрация CXCL1 в ответ на статическую нагруз-
ку существенно увеличивалась [25, 26]. В одной
из недавних работ изучалось воздействие изомет-
рических упражнений в сочетании с электромио-
стимуляцией на уровень цитокинов, мышечную
силу, функцию коленного сустава у пожилых
женщин с ранним коленным остеоартритом [1].
Данное исследование показало, что 8-недельная
программа изометрических упражнений значи-
тельно улучшила самочувствие пациентов по ре-
зультатам заполнения специализированного
опросника и привела к снижению уровня воспа-
лительных биомаркеров, таких как С-реактив-
ный белок, IL-6 и TNF-alpha, а также гормона ре-
зистина в крови, который индуцирует экспрес-
сию воспалительных цитокинов и хемокинов в
суставных хондроцитах человека.

Запуск изменений продукции цитокинов мы-
шечными клетками под действием как динамиче-
ских, так и статических упражнений может быть
связан с тем, что мышечное сокращение сопря-
жено с повышением концентрации ионов каль-
ция в саркоплазме в результате его выхода из сар-
коплазматического ретикулума. Повышение
концентрации кальция способно модулировать
транскрипцию цитокинов, хемокинов, в том чис-
ле LIF, IL-6, eNOS и nNOS (эндотелиальная и
нейрональная синтазы окиси азота) и др. через
кальмодулин-зависимые киназные каскады [36].
Повышение концентрации Са2+ может модули-
ровать транскрипцию генов воздействуя на экс-
прессию JNK через последующую активацию
ядерного фактора NFkB [25, 37]. Другой путь ак-
тивации продукции цитокинов, обусловленный
повышением концентрации ионов кальция, мо-
жет быть опосредован кальцийнейрином (проте-
инфосфатаза 2В), который после активации каль-
цием в комплексе с кальмодулином дефосфори-
лирует ядерный фактор активации Т-клеток
(NFAT) и способствует его прохождению в кле-
точное ядро. NFAT может влиять на транскрип-
цию генов напрямую или через фактор тран-
скрипции АР-1. 

Установлено, что мышечное сокращение вы-
зывает изменение концентрации ионов натрия и
калия в миоцитах. В работах [25, 26] было показа-
но значительное уменьшение концентрации K+,
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МАКСИМОВА и др.

а также возрастание концентрации Na+ и соотно-
шения Na+/ K+ в мышечных клетках сразу после
физических упражнений (динамических и стати-
ческих), но через 1 час эти изменения были сла-
бее, а через 5 часов после нагрузки они отсутство-
вали. Эти результаты дают основания предпола-
гать, что пусковой механизм в изменении
транскрипции генов при мышечном сокраще-
нии, связан с транзиторным изменением концен-
траций Na+ и K+, принимая во внимание извест-
ные данные о том, что изменение концентраций
Na+, K+ и соотношения Na+/ K+ могут быть триг-
гером в изменении транскрипции генов [26]. 

Имеются представления о том, что изменение
транскрипции генов в мышечных клетках при со-
кращении связано со значительным падением
уровня гликогена, что способно повысить актив-
ность митоген-активируемой киназы р38 и через
нее активировать транскрипционный фактор
NFkB, а также повысить транскрипцию генов,
например, для IL-6 [25, 37]. Таким образом, рас-
сматриваются Са2+ -независимые механизмы
воздействия мышечных сокращений на тран-
скриптом мышечных клеток наряду с Са2+ -зави-
симыми.

В целом литературные данные свидетельству-
ют о влиянии физических нагрузок и на тран-
скрипцию генов, и на секрецию миокинов мы-
шечными клетками, что можно рассматривать
как механизм адаптивного структурно-функцио-
нального изменения состояния мышечных воло-
кон в результате упражнений. Это относится как
к динамическим, так и к статическим нагрузкам,
однако работ о влиянии статических упражнений
на продукцию миокинов в мышцах значительно
меньше. Следует заметить также, что влияние си-
ловых нагрузок на секрецию миокинов даeт осно-
вание предполагать активацию регенеративных
процессов под действием изометрических упраж-
нений после эндопротезирования.

ВЛИЯНИЕ ИЗОМЕТРИЧЕСКИХ 
УПРАЖНЕНИЙ НА КРОВООБРАЩЕНИЕ 

И МАССОПЕРЕНОС В МЫШЕЧНОЙ ТКАНИ
Об активации ангиогенеза под действием изомет-

рических упражнений свидетельствует тот факт, что 
такие упражнения вызывают рост мышц, гипертро-
фию мышечной ткани, что указывает как на проли-
ферацию мышечных клеток и их предшественников, 
так и на рост кровеносных сосудов. В регуляции ан-
гиогенеза принимает участие множество цитокинов, 
включая, в частности, эндотелиальный ростовой 
фактор (VEGF), различные факторы роста фиброб-
ластов (FGFs), трансформирующие ростовые факто-
ры β (TGF-βs), матриксные металлопротеиназы 
(MMPs), IL-6, ангиопоэтины 1 и 2, эритропоэтин, NO

и, соответственно, разные формы NO-синтаз (eNOS,
nNOS, iNOS) и др. [38]. Такой широкий набор фак-
торов указывает на сложную сеть внеклеточной и
внутриклеточной сигнализации ангиогенеза, особен-
но если учесть плейотропный эффект каждого из
этих факторов на клеточные процессы. В качестве
примера функционального значения указанных ци-
токинов можно отметить, что VEGF индуцирует про-
лиферацию и миграцию эндотелиальных клеток;
FGFs – миграцию различных клеток, пролиферацию
гладкомышечных и эндотелиальных клеток, ангиоге-
нез; MMPs ответственны за протеолиз коллагена при
миграции клеток в тканевом матриксе; eNOS через
NO потенциирует ангиогенные эффекты VEGF, EGF
[39]. IL-6 влияет на ангиогенез сложным образом, на-
прямую или опосредованно, например, воздействуя
на эффекты VEGF через STAT-сигналинг [40]. Среди
указанных факторов VEGF рассматривается как один
из наиболее выраженных регуляторов ангиогенеза. В
то же время реакция VEGF в мышечной ткани на
упражнения была неоднозначной. В работе [41] было
показано, что активность VEGF в скелетных мышцах
после упражнений уменьшалась, а в плазме крови
возрастала. В работах других авторов [42] физическая
нагрузка увеличивала активность VEGF в сыворотке
крови и в миокарде. Предполагается [38], что отличия
в изменении уровня VEGF на физические нагрузки в
разных тканях могут быть связаны с особенностями
влияния на ангиогенез сочетания VEGF и NO, кото-
рый повышается при нагрузках [43]. Возможно влия-
ние увеличения IL-6 и других факторов (например,
FGFs) после нагрузки на активность VEGF в актива-
ции ангиогенеза. Наличие широкого набора модуля-
торов ангиогенеза указывает на разветвленность пу-
тей его регуляции. В настоящее время нет полного по-
нимания в этом вопросе, но многие факторы,
стимулирующие ангиогенез, активируются при фи-
зических нагрузках и их уровень возрастает в мышцах
при физических упражнениях [42]. Другими меха-
низмами активации ангиогенеза могут быть влияние
упражнений на метаболизм липидов и глюкозы, фор-
мирование условий гипоксии, активирующей HIF-1
сигналинг [38]. 

Кроме активации ангиогенеза путем воздей-
ствия на продукцию миокинов, изометрические
упражнения могут активировать массообмен
между мышечными клетками и кровью по пита-
тельным компонентам и продуктам метаболизма
в результате повышения активности вазодилата-
тора NO [43]. Еще одним механизмом активации
этого массообмена в мышечной ткани можно
предполагать микропульсации сокращения мы-
шечных волокон и клеток при изометрических
упражнениях, которые могут оказывать механи-
ческое давление на интерстициальную жидкость
и вызывать ее движение [44, 45]. Можно предпо-
ложить, что такая активация массопереноса в мы-
шечной ткани способна повышать эффектив-
ность удаления из ткани продуктов распада,
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провоспалительных факторов, усиливать снабже-
ние мышечной ткани питательными компонен-
тами и, соответственно, способствовать регене-
ративным процессам в области оперированной
ткани.

ВОЗДЕЙСТВИЕ ИЗОМЕТРИЧЕСКИХ 
УПРАЖНЕНИЙ НА РЕМОДЕЛИРОВАНИЕ 
И ВОССТАНОВЛЕНИЕ КОСТНОЙ ТКАНИ

 В ряде исследований, проведенных с участием
пациентов и на экспериментальных животных,
было показано, что изометрические упражнения
предотвращают снижение минеральной плотно-
сти костной ткани, ускоряют регенеративные
процессы в ней и способствуют сращению фраг-
ментов костной ткани [46–48]. В частности, было
показано, что возрастающие по нагрузке изомет-
рические силовые тренировки в течение десяти
недель увеличивали трабекулярную (метафизар-
ная зона) и кортикальную (диафизарная зона)
массу бедренной кости у растущих крыс [48].
В этих экспериментах было выявлено также, что
экскреция дезоксипиридинолина (маркер рез-
орбции кости) с мочой была ниже в эксперимен-
тальной группе, чем в контрольной. Такие ре-
зультаты указывают на то, что изометрические
силовые тренировки могут увеличить костную
массу, за счет ингибирования резорбции кости.
Результаты другого исследования показали, что
изометрическая тренировка в течение одного ме-
сяца у пациентов с переломом бедренной кости
не только предотвращает снижение минеральной
плотности костной ткани в области шейки и
большого вертела бедренной кости, но и значи-
тельно увеличивает минеральную плотность
костной ткани в этих областях, о чем свидетель-
ствовали данные остеоденситометрии [46]. В ис-
следовании [47] было показано, что у пациентов
после внутрисуставного перелома большеберцо-
вой кости в группе, которая выполняла изометри-
ческие упражнения в течение 4 недель, наблюда-
ется достоверное повышение уровня костно-спе-
цифической щелочной фосфатазы в сыворотке
крови и усиление образования костной мозоли в
сравнении с пациентами, выполняющими
упражнения по стандартной методике, которая
включала сгибание в коленных и голеностопных
суставах без выполнения изометрических упраж-
нений. Эти данные позволяют предположить, что
изометрические упражнения увеличивают актив-
ность остеобластов в костной ткани в области
операции [46–48]. 

Авторы работы [49] обнаружили, что механи-
ческая нагрузка, которую начинали через 4 неде-
ли после формирования костного дефекта у крыс, 
усиливала регенерацию костной ткани, сти-
мулируя ангиогенез, в то же время механическая 
нагрузка, которую допускали сразу после опера-

ции, ингибировала этот процесс. Эти данные
позволяют предположить, что активация ангио-
генеза и его влияние на ремоделирование кост-
ной ткани в ответ на механическую нагрузку ха-
рактеризуются нелинейной зависимостью от вре-
мени начала нагрузки после повреждения кости.
По-видимому, раннее воздействие физических
упражнений на область дефекта костной ткани
может способствовать поддержанию воспаления
в ране и препятствовать регенерации кости.

Одним из возможных механизмов влияния
изометрических упражнений на костную ткань
рассматривается передача давления от сокраща-
ющейся мышцы к сухожилию, которое прикреп-
ляет эту мышцу к кости, и далее к самой кости
[50]. При таких упражнениях происходит микро-
сокращение мышечной ткани, которое через ука-
занные сухожилия может обеспечивать механи-
ческую стимуляцию костной ткани. Другой воз-
можный механизм влияния изометрических
упражнений на костную ткань можно предполо-
жить в виде прямого воздействия микросокраще-
ний мышечных клеток на тканевой матрикс. Ме-
ханическая стимуляция может передаваться через
внеклеточный матрикс к остеобластам, остеоци-
там, периостальным клеткам и остеокластам, и
механорецепторы этих клеток могут восприни-
мать эти механические воздействия. Различные
белки клеточной поверхности или мембранные
структуры, включая интегрины, ионные каналы,
коннексоны, рецепторы, связанные с G-белком,
и первичные реснички, рассматриваются потен-
циальными механочувствительными структура-
ми [51]. Воздействие микропульсаций интерсте-
циальной жидкости, вызванных мышечным со-
кращением, на механорецепторы способно
влиять на сигнальные пути, определяющие сек-
рецию цитокинов, и через изменение локальной
концентрации цитокинов активировать локаль-
ный ангиогенез и ремоделирование костной тка-
ни [51]. Это касается не только остеокластов и
остеобластов, но и клеток лакунарно-канальцие-
вой системы, остеоцитов [52, 53]. Существуют
экспериментальные данные о том, что сдвиговое
напряжение жидкости действительно способно
влиять на морфологию остеокластов, на экспрес-
сию генов в них, на их дифференцировку, на сек-
рецию ими сигнальных молекул, таких как NO,
простагландины Е и др. [54, 55]. 

Важно подчеркнуть, что ключевой составляю-
щей всех указанных выше механизмов является
механическое воздействие мышечных сокраще-
ний на секреторную активность клеток костной
ткани и периостальных клеток, что ведет к изме-
нению активностей цитокинов, определяющих
остеогенез (PDGF, FGFs, костных морфогенети-
ческиx белкoв семейства BMPs, TGFβs, инсули-
ноподобных факторов роста, VEGF, интерлейки-
нов, MMPs и др.) [47, 56, 57]. Хотелось бы отме-
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тить невероятную сложность детального
понимания кооперативного характера этого ко-
ординированного в пространстве и времени ре-
моделирования/восстановления костной струк-
туры и ангиогенеза через изменение активностей
множества цитокинов [58].

РЕКОМЕНДОВАННЫЕ МЕТОДЫ РАННЕЙ 
РЕАБИЛИТАЦИИ ПАЦИЕНТОВ 

ПОСЛЕ ЭНДОПРОТЕЗИРОВАНИЯ 
ТАЗОБЕДРЕННОГО СУСТАВА 

И НЕОБХОДИМОСТЬ ИХ 
СОВЕРШЕНСТВОВАНИЯ

Ранний послеоперационный период продол-
жается в течение первых двух недель после опера-
ции, в течение которых происходит острое реак-
тивное воспаление в зоне операции и последую-
щее заживление послеоперационной раны. В 
течение первой недели реабилитации пациенту 
показан щадящий двигательный режим [5]. В со-
ответствии с клиническими рекомендациями по 
коксартрозу, утвержденными Минздравом Рос-
сии, пациентам с первого дня после операции на-
значают дыхательную гимнастику, активные 
упражнения для суставов здоровой ноги (тазобед-
ренного, коленного, голеностопного), изометри-
ческую гимнастику для мышц (ягодичных, перед-
них и задних группы мышц бедра, мышц голени) 
оперированной конечности, пассивную гимна-
стику для оперированного тазобедренного суста-
ва на функциональной шине с постепенным уве-
личением угла сгибания [5]. Физические упраж-
нения в изометрическом режиме для укрепления 
мышц тазового пояса и нижних конечностей ре-
комендовано выполнять по 5–10 с, проводя 5–15 
повторов за один подход [5]. В российской и 
зарубежной научной литературе приводятся раз-
личные программы физической реабилитации, 
разрабатываются и патентуются новые способы 
реабилитации, в том числе и ранней, после эндо-
протезирования ТБС, а также обсуждаются их до-
стоинства и недостатки [8, 59–65].

В целом можно сказать, что применяемые
комплексы с использованием изометрических
упражнений для ранней реабилитации после эн-
допротезирования ТБС не рассматриваются как
оптимальные, и требуется их совершенствование
[66]. Особенно остро это проявляется для паци-
ентов пожилого и старческого возраста. Также
следует отметить, что доказательство эффектив-
ности программы ранней реабилитации остается
проблематичным [67–72]. По сути, недостаточно
разработаны критерии для объективной оценки
эффективности ранних реабилитационных про-
грамм. Применение общепринятых тестов и
шкал, таких как шкалы Лекена, Харриса, визуаль-
ная аналоговая шкала боли, опросник качества
жизни SF-36, 10-метровый тест ходьбы, тест

«встань и иди», измерение силы нижних конеч-
ностей и пр. для оценки степени тренированно-
сти и функционального состояния мышц непри-
емлемы на этапе раннего реабилитационного пе-
риода или имеют большую погрешность и 
субъективность. Соответственно, актуальной 
остается задача поиска объективных способов 
оценки эффективности программ ранней реаби-
литации для разработки оптимальных комплек-
сов изометрических упражнений, в том числе 
учитывающих индивидуальные особенности па-
циентов. Для разработки эффективных методов 
ранней реабилитации пациентов после операций 
эндопротезирования и объективной оценки их 
эффективности необходимо знание биофизиче-
ских основ влияния физических и, в частности, 
изометрических упражнений, на процессы реге-
нерации мышечной и костной тканей. Для 
объективной оценки эффективности разрабаты-
ваемых способов представляют интерес возмож-
ности использования современных методов 
молекулярно-клеточной биологии, например 
таких, как транскриптомный анализ и другие. 

ЗАКЛЮЧЕНИЕ

Анализ литературных источников указывает,
что в настоящее время отсутствует ясное пред-
ставлении о степени эффективности изометриче-
ских упражнений в ранней реабилитации паци-
ентов после эндопротезирования, а также недо-
статочно развиты подходы для объективной
оценки этой эффективности. Для разработки эф-
фективных комплексов изометрических упраж-
нений для ранней реабилитации пациентов после
эндопротезирования и для разработки способов
объективной оценки их эффективности актуаль-
но понимание механизмов воздействия изомет-
рических упражнений на восстановление повре-
жденных тканей опорно-двигательного аппарата
на тканевом, клеточном и молекулярном уров-
нях. Для совершенствования процессов реабили-
тации важно понимание, какие изменения в
мышцах вблизи области раны происходят на
уровне транскриптома при выполнении изомет-
рических упражнений, как долго эти изменения
закрепляются и сохраняются на молекулярно-
клеточном уровне, как это зависит от интенсив-
ности и временного режима их выполнения.
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МАКСИМОВА и др.

 Biophysical Basics of the Use of Isometric Exercises in the Rehabilitation of Patients 
after Hip Replacements

 E.A. Maksimova*, V.I. Shevchenko**, and V.S. Akatov*
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Currently, isometric exercises are widely used to increase muscle strength and endurance. Isometric exercises
are used also in rehabilitation protocols for limited joint mobility after arthroplasty operations. The article re-
views the effect of isometric exercises on the morphofunctional characteristics of muscle cells, cytokine se-
cretion by muscle cells, blood circulation and mass transfer in muscle tissue, as well as on bone remodeling
and repair. The existing protocols for early rehabilitation of patients after total hip replacement are not opti-
mal; they do not take into account the individual characteristics of patients. To develop effective methods of
early rehabilitation of patients after hip replacement, it is necessary to understand the biophysical basis of the
effect of isometric exercises on the processes of regeneration of muscle and bone tissues. 

Keywords: rehabilitation, hip replacement, isometric exercises, molecular and cellular mechanisms, regeneration




