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С использованием метода функционала плотности проведено моделирование гидролиза аденозин-
трифосфата до аденозиндифосфата и ортофосфата. Рассмотрены две системы: молекула аденозин-
трифосфата в водном растворе и продукты реакции (аденозиндифосфат, ортофосфат и H+), равно-
мерно окруженные водой (nH2O = 80). Расчеты показали, что гидролиз аденозинтрифосфата сопро-
вождается уменьшением полной энергии системы, что согласуется с представлениями об
энергодонорном характере реакции гидролиза аденозинтрифосфата до аденозиндифосфата и орто-
фосфата. В отсутствие двухвалентных катионов понижение энергии в результате гидролиза аденоз-
интрифосфата составляет ΔE = −EADP+Pi − EATP  ≈ −110 кДж/моль. Электростатические взаимо-
действия, обусловленные присутствием двухвалентных катионов (Mg2+ или Ca2+), увеличивают
энергию гидролиза (E ≈ 135 кДж/моль). Полученные результаты обсуждаются в контексте энерге-
тической роли аденозинтрифосфата в биологических системах.
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Молекула аденозинтрифосфата (ATP) – важ-
нейший участник энергозависимых биологических
процессов  [1−3]. При гидролизе АТP в результате
нуклеофильной атаки молекулой воды γ-фосфат-
ной группы АТР разрывается фосфоангидридная
связь и отщепляется фосфорильная группа. Конеч-
ными продуктами этой реакции являются адено-
зиндифосфат (ADP) и неорганический фосфат (ор-
тофосфат, Pi): ATP + Н2О → ADP + Pi + Н+  [1−3].
Молекулы ATP и ADP хорошо растворимы в воде,
они обладают высоким сродством к ионам магния
Mg2+, которые являются обязательными участни-
ками реакций ферментативного гидролиза АТР [1–
8]. При физиологических значениях pH заряды
комплексов Mg2+ATP4− и Mg2+ADP3− равны −2 и
‒1 соответственно, ортофосфат также находится в
заряженной форме (HPO4

2−  при рН 7.0 имеет заряд,
равный −2). 

Стабильность молекулы АТР в водном растворе
объясняется достаточно высоким энергетическим

барьером на пути реакции гидролиза АТР (Ea ~ 60–
100 кДж/моль [9–11]). В случае ферментативного
гидролиза АТР высота барьера снижается, в резуль-
тате чего гидролиз АТР ускоряется. Энергия, выде-
ляемая при ферментативном гидролизе ATP,
используется для катализа различных энерго-
зависимых процессов в клетке [3]. Свободная энер-
гия гидролиза ATP (ΔGATP) зависит от разных фак-
торов − концентрации реагентов, рН и ионной силы
раствора. В стандартных условиях (25°С, pH 7.0)
свободная энергия гидролиза ATP равна ΔG'° ≈
≈ ‒30.5 кДж/моль [3]. В биологических системах
при физиологических условиях энергия гидролиза
АТP до АDP и Pi может быть выше; например, в
эритроцитах человека ΔGATP ≈ −52 кДж/моль [3]. 

Теоретические исследования механизмов гид-
ролиза различных трифосфатов неоднократно
проводились ранее (см., например, работы [9–
20]). Для этого использовали методы квантовой
химии, молекулярной механики и молекулярной
динамики. Теоретические исследования гидро-
лиза АТР по-прежнему актуальны; особый инте-
рес представляет вопрос о роли водного окруже-
ния в энергетике гидролиза АТР. В предыдущих

Сокращения: ATP – аденозинтрифосфат, ADP – аденозин-
дифосфат, Pi – неорганический фосфат (ортофосфат).
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работах роль молекул воды (нуклеофильный реа-
гент) в реакции гидролиза трифосфатов анализи-
ровали комбинированным способом, используя
квантово-химические методы, сопряженные с
методами молекулярной механики (методология
QM/MM [13, 14]) или молекулярной динамики
(например, методом Кара–Парринелло [21]). Ре-
зультаты этих исследований не всегда однознач-
ны и часто бывают противоречивы. Например, в
работе [10], посвященной молекулярно-динами-
ческому моделированию гидролиза АТР (число
молекул воды, окружающих реагенты, составляло
nH2O = 54) было получено, что гидролиз АТР со-
провождается небольшим повышением свобод-
ной энергии, что не согласуется с эксперимен-
тальными данными. В работе [20] сообщалось о
разительных противоречиях в моделировании
взаимодействия АТР с ионами Mg2+ при исполь-
зовании силовых полей Amber и CHARMM. В
работах [15, 16], посвященных исследованию
гидролиза акватированной (nH2O = 178)
молекул GТР методом функционала плотности
(B3LYP/6−31G**, 310 K), был получен нереально
низкий энергетический барьер для реакции гид-
ролиза АТР в водном растворе (Ea ~ 2 кДж/моль).
Это вызвало острую критику со стороны авторов
работы [22], поскольку столь низкий барьер про-
тиворечит известным фактам о стабильности АТР
и других нуклеозидтрифосфатов в водных рас-
творах. 

В настоящей работе мы рассмотрели энергетиче-
ские аспекты реакции гидролиза ATP в водных рас-
творах и вычислили разность полных энергий меж-
ду конечным (EADP+Pi) и начальным (EATP) состоя-
ниями модельных систем (ΔEATP = EADP+Pi −
‒ EATP), геометрии которых были оптимизированы
методом функционала плотности. При этом в явном
виде учитывалось сравнительно большое число мо-
лекул воды, равномерно окружающих реагенты. Бы-
ли построены две модельные системы: 1) акватиро-
ванная молекула АТР (число окружающих молекул
воды равно nH2O = 80), 2) акватированные продукты
реакции (ADP, Pi и H3O+, nH2O = 79). Не касаясь во-
проса о динамике структурных перестроек реаген-
тов и водной шубы (см. обзор [23]), мы рассчитали
полные энергии систем в начальном (АТР) и конеч-
ном (ADP, Pi) состояниях и показали, что гидролиз
АТР сопровождается заметным уменьшением энер-
гии системы (ΔEATP = EADP+Pi − EATP ~ −(110–
135) кДж/моль)1, что согласуется с общеизвестными
представлениями об энергодонорном характере

этой реакции. Показано также, что электростатиче-
ские взаимодействия, связанные с образованием
комплекса между ATP и двухвалентным катионом
(Mg2+ или Ca2+), увеличивают энергию гидролиза
АТР (возрастание |ΔEATP|) и тем самым могут спо-
собствовать гидролизу АТР.

ПОСТРОЕНИЕ МОДЕЛЬНЫХ СИСТЕМ 
И МЕТОДЫ РАСЧЕТОВ

Mg2+ATP4− в водном окружении. Уравнение ре-
акции гидролиза ATP, которую мы моделировали
с учетом зарядовых состояний реагентов при
pH > 7.5–8.0, может быть записано в следующем
виде:

Mg2+ATP4− + 2H2O =

= Mg2+ADP3− + HPO4
2− + H3O+.

 (1)

В соответствии с уравнением (1), суммарный
заряд комплекса Mg2+ATP4− равен Z = −2, заряд
комплекса Mg2+ADP3− равен −1, заряд ортофорс-
фата (HPO4

2− )  равен −2. В этом уравнении H3O+

обозначает ион гидроксония, образовавшийся
после присоединения протона от молекулы воды
(Н2О → ОН− + Н+), атакующей γ-фосфат, к одной
из молекул Н2О, находящихся в окружении АТР
(Н+ + Н2О → Н3О+).

Водную оболочку вокруг молекулы ATP фор-
мировали по аналогии с тем, как это делалось ра-
нее [24−27]. На первом шаге построения оболоч-
ки, c помощью графического редактора Avogadro 
[28] была сконструирована и затем с помощью 
программного пакета ORCA [29] оптимизирована
геометрия депротонированной молекулы ATP4−

(с использованием силового поля MMFF94), со-
ответствующая pH 8.0. После этого к молекуле
ATP добавляли ион магния Mg2+ (между β- и
γ-фосфатами), затем геометрию полученного
комплекса снова оптимизировали. Далее к ком-
плексу Mg2+ATP4− последовательно добавляли
молекулы воды (не более семи штук за один ите-
рационный шаг), используя графический редак-
тор Avogadro [28], который позволял варьировать
положение и ориентацию молекул воды. Выби-
рая положения для добавляемых молекул воды,
мы стремились разместить их таким образом,
чтобы фосфатные группы молекулы ATP были
равномерно окружены водой. Завершающим эта-
пом каждого шага итерации была оптимизация
геометрии системы с использованием метода
функционала плотности. В соответствии с опи-
санным выше протоколом мы построили водные
оболочки вокруг субстрата Mg2+ATP4− и продук-

1 Приведенное значение ΔEАТР отличается от величины
«стандартной» свободной энергии гидролиза АТР, равной
ΔG'o = −30.5 кДж/моль [3]. См. пояснения в разделе
«Приложение».
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тов реакции (Mg2+ADP3− и HPO4
2−),  содержащие

по 80 и 79 молекул воды соответственно. Расчеты
проводили с использованием функционала PBE
[30], основного базиса def2-SVP [31] и расширен-
ного базиса def2/J [32]. Водные оболочки вокруг
субстрата и продуктов реакции, состоящие из 80 и
79 молекул воды, показаны на рис. 1 и 2. 

Продукты гидролиза АТР в водном окружении.
Зарядовые состояния комплекса Mg2+ADP3– и
ортофосфата HPO4

2– характерны для их водных
растворов при рН 7.0 [3]. На основе системы, со-
держащей комплекс Mg2+ATP4–, окруженный 43
молекулами воды, мы сначала строили предвари-
тельную систему, включающую в себя
Mg2+ADP3–, ортофосфат и 42 молекулы воды (из
расчета, что одна молекула воды была израсходо-
вана в ходе реакции гидролиза). Исследование
комплексов Mg2+ADP3– при меньшем количе-
стве молекул воды не оправдано, поскольку такие
комплексы не полностью экранированы молеку-
лами воды, а вклад воды в энергию гидролиза ATP
искажается за счет краевых эффектов. Расчеты
энергии основного состояния для систем с

Mg2+ADP3− проводили, начиная с nH2O = 43. Для
построения такой системы сначала изменили по-
ложение γ-фосфата молекулы ATP, отодвинув его
на несколько ангстремов от α- и β-фосфатов. За-
тем, ион магния Mg2+, который располагался
между β- и γ-фосфатами, сместили в положение
между α- и β-фосфатами, которое соответствует
положению Mg2+ в молекуле ADP [1–3]. Нако-
нец, для молекулы воды, самой близкой к гидро-
лизуемой связи, мы изменили положения ядер.
Ядро водорода приблизили к β-фосфату молеку-
лы ADP, а гидроксильную часть молекулы воды
приблизили к фосфорильной группе, отщепив-
шейся от ATP, из которой получался ортофосфат
(HPO4

2−).  Заключительным этапом конструиро-
вания предварительной модельной системы для
продуктов реакции была оптимизация геометрии
всей системы. Затем, по аналогии с процедурой,
проведенной для комплекса Mg2+ATP4−, мы уве-
личивали размер водной оболочки до 79 молекул
воды вокруг Mg2+ADP3− и HPO4

2−  и снова опти-
мизировали геометрию всей системы (рис. 2). 

Рис. 1. Молекула ATP в комплексе с ионом магния Mg2+, окруженная 80 молекулами воды, после
оптимизации геометрии системы в программном пакете ORCA. Ион магния обозначен зеленым цветом,
атомы кислорода – красным, атомы углерода – темно-серым, атомы азота – синим, атомы фосфора –
оранжевым, а атомы водорода – светло-серым.
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Модельные системы с другими ионами. Для того
чтобы выяснить, как ионное окружение молеку-
лы ATP влияет на энергию ее гидролиза, мы уда-
лили ион Mg2+ из систем, содержащих акватиро-
ванные комплексы Mg2+ATP4− и Mg2+ADP3−.
После этого оптимизировали геометрию полу-
ченной системы. Для получения систем, содер-
жащих комплексы Ca2+ATP4− или K+ATP4−,
окруженные молекулами воды, ион магния в
комплексах Mg2+ATP4− и Mg2+ADP3− заменяли
ионом Ca2+ или K+ соответственно. 

Методика расчетов. Квантово-химические вы-
числения проводили методом теории функцио-
нала плотности с использованием некоммерче-
ского программного пакета ORCA [29]. Суммар-
ный заряд системы зависел от ионного окруже-
ния: в случае ионов Mg2+ и Ca2+ суммарный
заряд системы был равен −2, в случае иона калия
K+ заряд был равен −3. В случае, когда ионы были
изъяты из системы, суммарный заряд системы
был равен −4. Во всех расчетах мультиплетность
была равна 1 (суммарный спин равен нулю). Та-
кой выбор оправдан тем, что согласно данным,
приведенным в работе [16], триплетное состоя-
ние АТР характеризуется более высокой энергией

системы. В качестве функционала плотности ис-
пользовали обобщенный градиентный негибрид-
ный функционал плотности PBE [30], выбор ко-
торого был обусловлен тем, что для аналогичных
систем (акватированные нитроксильные радика-
лы) он давал наиболее точное согласие с экспери-
ментальными данными о константах сверхтонко-
го расщепления спектров ЭПР радикалов [24−27].
В настоящей работе были использованы основ-
ной базис def2-SVP [31] и расширенный базис
def2/J [32].

Водородные связи. В оценках энергетических
характеристик модельных систем со сравнитель-
но небольшим числом молекул воды (не более не-
скольких сотен), значительную роль могут играть
флуктуации энергии, обусловленные вариабель-
ностью структуры водной оболочки и числа водо-
родных связей. Понижение энергии, приходяще-
еся на одну водородную связь, равно приблизи-
тельно −20 кДж/моль [33], что сравнимо со
стандартной энергией гидролиза молекулы ATP
(ΔG'o = −30.5 кДж/моль). Для подсчета количе-
ства водородных связей нами была написана спе-
циальная программа на языке Python [34]. К во-
дородным связям между атомами кислорода со-
седних молекул воды мы отнесли те связи, для

Рис. 2. Молекула ADP в комплексе с ионом магния и ортофосфат, окруженные 79 молекулами воды. Ион
магния обозначен зеленым цветом, атомы кислорода – красным, атомы углерода – темно-серым, атомы
азота – синим, атомы фосфора – оранжевым, а атомы водорода – светло-серым.
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которых расстояние между атомами кислорода
короче 2.3 Å. 

РЕЗУЛЬТАТЫ РАСЧЕТОВ

Выше мы отмечали, что расчетные данные ча-
сто приводят к противоречивым и неоднознач-
ным результатам при моделировании химических
и биохимических процессов, связанных с гидро-
лизом трифосфатов. Авторы обстоятельных обзо-
ров [23, 35, 36] сообщают, что при расчетах, осно-
ванных на использовании QM/MM методов, а
также на использовании квантово-механических
подходов ab initio, авторы часто сталкиваются с
трудностями вычисления энергий активации, не-
равновесных и динамических эффектов. Эти об-
стоятельства побудили нас начать моделирование
реакции гидролиза АТР в водных растворах с оце-
нок стационарных энергетических характеристик
системы, содержащей исходный субстрат (АТР) и
конечные продукты реакции (ADP и Pi). Мы по-
лагаем, что в этих стационарных состояниях
флуктуации энергии вносят минимальный вклад
по сравнению с эффектами флуктуаций в пере-
ходных состояниях. 

Влияние водного окружения и двухвалентных
катионов на геометрию молекул АТР и ADP. На
рис. 1 и 2 показаны рассчитанные методом функ-
ционала плотности структуры акватированных
комплексов Mg2+АТР4− (субстрат), Mg2+ADP3−,
ортофосфата (HPO4

2−)  и H3O+ (продукты реак-
ции), находящихся внутри оболочек, состоящих
из 80 и 79 молекул воды соответственно. В обоих

случаях, как видно из этих рисунков, размеры
водной шубы достаточно велики, чтобы полно-
стью и равномерно окружить молекулами воды
АТР, ADP и ортофосфат.2 На рис. 3 структуры ак-
ватированных комплексов Mg2+АТР4−,
Mg2+ADP3− и HPO4

2−  показаны без окружающих
их молекул воды, чтобы можно было наглядно
рассмотреть расположение иона Mg2+ относи-
тельно атомов кислорода фосфатных групп суб-
страта и продуктов реакции. Примечательно, что
фосфатные «хвосты» молекул АТР, ADP изгиба-
ются относительно адениновых фрагментов. Это
хорошо согласуется с экспериментальными дан-
ными о строении АТР (см., например, классиче-
скую монографию [1], в которой показана модель
строения комплекса Mn2+АТР4−, предложенная
М. Кон и Дж. Ли на основании данных ЯМР); на-
ши данные также согласуются со структурами,
предсказанными методом молекулярной дина-
мики [12]. 

Общеизвестно, что реакция гидролиза АТР
происходит в результате нуклеофильной атаки
молекулой воды атома фосфора γ-фосфатной
группы [3] (см. схему реакции на рис. 3). После
присоединения ОН−  группы к фосфорильной
группе РО3

−,  отделившейся от АТР, в растворе
появляется молекула ортофосфата (РО3

−  + ОН−  →
→ НРО4

2−).  Оптимизация геометрии системы, со-

 2 Согласно замечанию А.А.Тулуба и В.Е. Стефанова [16], 78 мо-
лекул воды достаточно, чтобы полностью окружить водной
оболочкой реагенты реакции гидролиза АТР. 

Рис. 3. Схема гидролиза АТР, инициированного нуклеофильной атакой молекулой Н2О на γ-фосфат
молекулы АТР. Показаны рассчитанные структуры молекул акватированных комплексов Mg2+АТР4− (а) и
Mg2+ADP3− (б). Водные оболочки вокруг молекул АТР и ADP (см. рис. 1 и 2) на данном рисунке не
показаны, чтобы не маскировать структуры АТР и ADP.



218

БИОФИЗИКА  том 70  № 2  2025

МУКСЕЕВ, ТИХОНОВ

держащей продукты реакции, показывает, что от-
рицательно заряженная молекула НРО4

2− удалена
от комплекса Mg2+ADP3−, имеющего суммарный
отрицательный заряд. Очевидно, что удаление
НРО4

2− (в оптимизированной системе расстояние
между атомами фосфора β-фосфатной группы
ADP и НРО4

2− составляет ≈ 4.1 Å) обусловлено от-
талкиванием отрицательно заряженных атомов
кислорода фосфатных групп ADP3− и НРО4

2−.

Расположение ионов Mg2+ в наших системах
согласуется с экспериментальными данными, по-
лученными методом ядерного магнитного резо-
нанса ядер фосфора-31 (31Р-ЯМР-спектроско-
пия) [4]. Ион Mg2+ локализован вблизи отрица-
тельно заряженных атомов кислорода фосфатных
групп молекул АТР4− или ADP3−. В случае моле-
кулы АТР4−, расстояния от иона Mg2+до ближай-
ших атомов кислорода фосфатных групп β и γ со-
ставляют 2.06 и 2.07 Å соответственно. После гид-
ролиза АТР4− ион Mg2+ смещается в сторону α- и
β-фосфатных групп молекулы ADP3−. В этом слу-
чае расстояния до ближайших к Mg2+ атомов кис-
лорода фосфатных групп α и β составляют 2.23 и
2.08 Å соответственно. При замене иона Mg2+ на
ион Ca2+ мы получили аналогичные данные.
В случае акватированной молекулы АТР4−, рас-
стояния от иона кальция до ближайших атомов

кислорода β- и γ-фосфатных групп, равны 2.37 Å.
Для молекулы ADP3− расстояния до ближайших 
атомов кислорода α− и β-фосфатных групп равны 
2.39 и 2.29 Å соответственно.

Энергетика гидролиза АТР. По разности энер-
гий EADP+Pi и EATP, рассчитанных для аквати-
ровнных систем, содержащих реагенты (ATP +
+ nН2О) и продукты реакции (ADP + HРO4

2− +
+ H3O+ + (n–1)H2O), мы вычисляли энергию
гидролиза молекулы ATP, равную ΔEATP =
= EADP+Pi – EATP (табл. 1). Согласно нашим рас-
четам, гидролиз АТР – это энергетически выгод-
ный процесс. После гидролиза АТР полная энер-
гия системы уменьшается (ΔEATP < 0), что согла-
суется с экспериментальными данными об
экзотермическом характере этой реакции. Взаи-
модействие двухвалентных катионов Mg2+ и Ca2+

с отрицательно заряженными атомами кислорода
фосфатных групп и молекулами воды, непосред-
ственно окружающими катионы, способствует
гидролизу ATP. В присутствии Mg2+ полный за-
ряд каждой из рассматриваемых систем равен −2,
что соответствует зарядам субстрата (Mg2+ATP4−)
и продуктов реакции (Mg2+ADP3− + HРO4

2− +
+ H3O+) в водной среде при pH > 7.5 [3]. Энергия,
выделяемая при гидролизе АТР (модуль величи-
ны ΔEATP), в присутствии Mg2+ или Ca2+ больше,
чем в отсутствие катионов (табл. 1).

Таблица 1. Энергии гидролиза (ΔEATP = EADP+Pi − EATP) акватированной молекулы ATP (nH2O = 80),

Ионный 
состав

ΔEATP 
(кДж/моль)

Количество водородных связей

Между молекулами H2O 
водной оболочки

Между молекулами H2O 
водной оболочки и 

фосфатными группами 
ATP или ADP и Pi

Суммарное число 
водородных связей

NATP NADP+Pi NATP NADP+Pi NATP NADP+Pi

Без ионов –115 128 122 31 35 159 157

K+ –107 128 121 32 34 160 155

Mg2+ –133 124 114 33 36 157 150

Ca2+ –137 123 114 32 36 155 150

Примечание. Параметры рассчитаны для модельных систем, у которых была оптимизирована геометрия при различном
ионном окружении ATP и ADP. Число относительно коротких водородных связей, образующихся между молекулами Н2О в
водной оболочке, между молекулой ATP (или ADP и Pi) и молекулами Н2О, а также суммарные числа водородных связей
определены в соответствии с критерием d(HOН···O–) < 2.3Å
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Отметим, что приведенные в табл. 1 данные о
числе водородных связей, образуемых с участием
молекул Н2О, имеют качественный характер, по-
скольку нет однозначного критерия, по которому
ту или иную связь между атомами следует отнести
к водородной на основании длины связи [36]. Тем
не менее, анализ числа водородных связей, вы-
полненный на основании выбранного нами кри-
терия (d(HOН…O−) < 2.3Å), указывает на то, что в
результате гидролиза АТР происходит перестрой-
ка гидратной оболочки вокруг реагентов. Если су-
дить по количеству сравнительно коротких водо-
родных связей (<2.3Å) в изученных нами модель-
ных системах, то можно заключить, что гидролиз
АТР приводит к перестройке конфигурации вод-
ной «шубы» вокруг реагентов, что согласуется с
экспериментальными данными, описанными в
работах [37, 38]. 

Взаимодействие катионов Mg2+ с отрицательно
заряженными атомами кислорода фосфатных групп
и молекул воды. Ион Mg2+ в воде, как известно
[36], координирован с 6 молекулами Н2О, непо-
средственно окружающими Mg2+. Наши расчет-
ные данные полностью согласуются с этим пред-

ставлением (рис. 4а). Ион Mg2+, входящий в ак-
ватированный комплекс Mg2+ATP4− (рис. 4б),
имеет 5 лигандов: Mg2+ взаимодействует с двумя
атомами кислорода фосфатных групп β и γ , с ато-
мами кислорода двух близлежащих молекул воды
(расстояние между Mg2+ и атомами кислорода
короче 2.3 Å) и взаимодействует с отрицательно
заряженным атомом N аденинового фрагмента
молекулы АТР (расстояние 2.13 Å).3 Остальные
атомы кислорода молекул Н2О удалены от иона
Mg2+ на бóльшие расстояния. После гидролиза
Mg2+ATP4− число атомов кислорода молекул Н2О
в ближайшем окружении иона Mg2+ возрастает
до четырех (рис. 4в). Из 6 лигандов, непосред-
ственно окружающих Mg2+, два лиганда − это
атомы кислорода α- и β-фосфатных групп моле-
кулы АDP, четыре лиганда – это атомы кислорода
четырех молекул Н2О, наиболее близких к иону
Mg2+. 

 3 О зарядах на атомах (по Малликену [40]) судили по резуль-
татам расчетов в рамках некоммерческой программы
ORCA [29]. 

Рис. 4. Фрагменты молекулярных систем, иллюстрирующие взаимодействие иона Mg2+ (показан зеленым цветом) с
атомами кислорода ближайших молекул Н2О объемной водной фазы, окружающих Mg2+ (а), а также взаимодействие
Mg2+ с атомами кислорода фосфатных групп молекул АТР (б), ADP (в) и ближайших к Mg2+ молекул Н2О водной
оболочки. Толстые пунктирные линии синего цвета символизируют взаимодействие иона Mg2+ с близлежащими
атомами кислорода и азота, удаленными от Mg2+ на расстояние не более 2.3 Å. Тонкими пунктирными линиями
зеленого цвета показано расположение атомов кислорода и атома азота (у молекулы ADP), удаленных от Mg2+ на
расстояния, попадающие в интервал от 3.53 до 3.86 Å. 
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Как мы отметили выше, если судить по числу
водородных связей в построенных нами систе-
мах, гидролиз АТР вызывает перестройку водной
«шубы» вокруг реагентов, что согласуется с дан-
ными, представленными в работах [37, 38]. Из
табл. 1 также видно, что в присутствии ионов
Mg2+ и Ca2+ дополнительно увеличивается энер-
гия гидролиза ATP. Это может происходить за
счет возрастания числа отрицательно заряжен-
ных атомов кислорода в ближайшем окружении
двухвалентных катионов, что свидетельствует об
электростатической природе этого эффекта.
В связывание ионов Mg2+ молекулами ATP4− и
ADP3−, кроме атомов кислорода фосфатных
групп, дополнительный вклад могут вносить мо-
лекулы Н2О, непосредственно окружающие
Mg2+ и фосфатные группы (рис. 4б,в). Число мо-
лекул воды, оказывающихся в ближайшем поло-
жении около иона Mg2+ (или Ca2+), возрастает
после гидролиза АТР. Как сказано выше, в исход-
ной системе, содержащей акватированную моле-
кулу ATP4− (рис. 4б), ближнее окружение иона
Mg2+ включает в себя два атома кислорода фос-
фатной группы и две молекулы воды (здесь учи-
тываются ближайшие атомы кислорода, которыe
удалены от Mg2+ не далее, чем на 2.3 Å). После
гидролиза АТР число близлежащих молекул воды
возрастает до четырех (рис. 4в). Аналогичный ре-
зультат был получен в случае гидролиза ATP4− в
присутствии Ca2+ вместо Mg2+ (данные не приве-
дены).

Обратим внимание на то, что в рассмотренных
нами модельных системах, нет аминокислотных
остатков белков, а энергии гидролиза АТР в при-
сутствии катионов Mg2+ или Са2+ приблизитель-
но одинаковы (табл. 1). Это свидетельствует, что
увеличение энергии гидролиза АТР, обусловлен-
ное присутствием двухвалентных катионов (воз-
растание |ΔEATP| по сравнению с системами без
Mg2+ или Са2+), имеет в своей основе электроста-
тическую природу. В то же время хорошо извест-
но [1−8], что в активных центрах ферментов, гид-
ролизующих АТР, именно ион Mg2+ является не-
посредственным участником реакций гидролиза
и синтеза АТР. Очевидно, что каталитический
эффект ионов Mg2+ в АТРазах (АТР-синтазах),
усиленный по сравнению с другими двухвалент-
ными катионами, определяется особенностями
строения каталитических центров этих фермен-
тов, проявляющих повышенное сродство к ионам
Mg2+. Известно, что конформации молекул АТР
в растворе и в каталитических центрах белков
различаются [12]. 

ЗАКЛЮЧИТЕЛЬНЫЕ КОММЕНТАРИИ 
И ОСНОВНЫЕ ВЫВОДЫ

Оценивая влияние водного окружения на
свойства молекул АТР и ADP, отметим, что вода
вносит существенный вклад в стабилизацию во-
дорастворимых (заряженных) молекул АТР и
ADP. Как показали наши расчеты, в отсутствие
водного окружения расчетные геометрические
характеристики этих молекул вариабельны
(структуры не приведены), что указывает на не-
стабильность молекул АТР и ADP в газовой фазе
и, тем самым, ставит под сомнение надежность
результатов моделирования структурно-функци-
ональных свойств АТР и ADP в безводной среде.
В то же время конформация акватированной мо-
лекулы АТР, рассчитанная методом функционала
плотности, хорошо согласуется с традиционными
представлениями о строении АТР (см., напри-
мер, монографию Г. Калькара [1], в которой
изображена структурная модель комплекса
Mn2+АТР4− в водном растворе, предложенная
М. Кон и Дж. Ли на основании данных ЯМР).

В ранней работе [12] методом Хартри–Фока
(на уровне теории HF/6-31G, без учета эффектов
электронной корреляции), было показано, что в
газовой фазе гидролиз АТР характеризуется нере-
ально высоким энергетическим барьером
(Еа ~ 210 кДж/моль). Окружение реагентов за-
метно влияет на энергетику реакции гидролиза
АТР. Высота барьера существенно снижается
(Еа ~ (19–28) кДж/моль), если моделировать ре-
акцию гидролиза непосредственно в каталитиче-
ском центре фермента βTP, содержащeм прочно
связанную молекулу АТР. При этом, как отмеча-
ют авторы работы [12], фосфатные группы моле-
кул АТР и ADP имеют те же состояния протони-
рования, что и в растворе. Данный результат со-
гласуется с известными представлениями Бойера
о том, что образование и гидролиз АТР в закры-
том каталитическом центре АТР-синтазы − это
изоэнергетический процесс, который характери-
зуется эффективной константой равновесия K,
близкой к 1, а потому образование АТР из ADP и
Pi в каталитическом центре βTP практически не
требует поступления энергии извне [5−7]. 

Основной результат нашего моделирования
гидролиза АТР в водной среде, выполненного ме-
тодом функционала плотности с явным учетом
окружения реагентов молекулами воды, заключа-
ется в том, что был показан вклад водного окру-
жения и двухвалентных катионов в стабилизацию
структуры молекул реагентов и в энергетику
гидролиза АТР. Расчеты показали, что в от-
сутствие водной оболочки вокруг молекулы
АТР ее гидролиз до ADP и Pi за счет взаимодей-
ствия с одной молекулой воды, атакующей АТР, −
энергетически невыгодная реакция (ΔEATP > 0).
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Реакция гидролиза АТР за счет нуклеофильной
атаки γ-фосфата молекулой воды становится
энергетически выгодным процессом, если моле-
кула АТР окружена водной оболочкой
(ΔEATP ≈ ‒135 кДж/моль в присутствии Mg2+ или
Ca2+). Двухвалентные катионы (Mg2+ или Ca2+)
образуют комплексы с молекулами АТР и ADP, а
также взаимодействуют с близлежащими молеку-
лами воды, что способствует дополнительному
увеличению энергии гидролиза АТР (ср. ΔEATP в
присутствии Mg2+ или Ca2+ и ΔEATP в системах
без ионов или в присутствии одновалентного ка-
тиона К+). Эти результаты согласуются с литера-
турными данными о роли двухвалентных катио-
нов в формировании гидратной оболочки вокруг
молекул АТР и ADP, которая может способство-
вать гидролизу АТР. Согласно работам [37, 38],
гидратные оболочки вокруг молекул АТР и
Mg·ATP заметно различаются.

Касаясь вопроса об энергетическом обеспече-
нии работы мембранных АТР-синтаз, заметим
следующее. Лимитирующей стадией в работе
этих ферментов в режиме синтеза АТР, как из-
вестно [2−7], является освобождение прочно свя-
занной молекулы АТР из каталитического центра
βTP. Согласно оценкам, приведенным в работе
[12], в режиме синтеза АТР для освобождения
АТР из митохондриальной АТР-синтазы необхо-
дима энергия, равная приблизительно
70 кДж/моль, которая используется для обеспе-
чения конформационных перестроек АТР-син-
тазного комплекса [2−6, 40]. Естественно думать,
что в режиме гидролиза АТР для освобождения
продуктов реакции (АDР и Рi) из каталитическо-
го центра не потребуется преодолевать столь вы-
сокий энергетический барьер. Согласно нашим
расчетам, энергия гидролиза АТР
(ΔEATP ~ ‒135 кДж/моль), отнесенная к началь-
ным и конечным реагентам, превосходит энерге-
тические затраты, связанные с преодолением ба-
рьера для выхода продуктов реакции из каталити-
ческого центра βTP. 

Заметим, что сопоставление результатов кван-
тово-химических вычислений с эксперименталь-
ными данными по энергетике гидролиза АТР мо-
жет быть осложнено тем, что измерения энерге-
тических характеристик реакции и результаты
моделирования относятся к разным системам
(см. раздел «Приложение»). Это связано с мето-
дическими трудностями, присущими квантово-
химическим и молекулярно-динамическим рас-
четам. Описанные выше процедуры оптимизации
геометрии реагентов и их водного окружения
позволяют находить локальные минимумы энер-
гии системы, которые, вообще говоря, могут от-
личаться от глобальных минимумов энергии изу-

чаемых систем. Квантово-химические расчеты
проводятся для молекулярных систем сравни-
тельно малых размеров (мезоскопические систе-
мы, как правило, не более нескольких сотен ато-
мов), в то время как экспериментальные измере-
ния энергетических характеристик (например,
определение свободной энергии гидролиза АТР)
выполняются для макроскопических систем.
В случае сравнительно малых динамических си-
стем, возрастает относительный вклад флуктуа-
ций энергии [41] за счет структурных перестроек,
которые могут затрагивать конфигурацию водной
оболочки. Структурные перестройки системы во-
дородных связей происходят быстро: в объемной
фазе воды характерные времена таких перестроек
составляют ~2 пс [42]. При расчетах нельзя также
пренебрегать краевыми эффектами, обусловлен-
ными ограниченными размерами системы (см.
подробнее обзор [43]). Мы полагаем, что исполь-
зование комбинированных методов − квантово-
механические вычисления ab initio (метод функ-
ционала плотности) в совокупности с молекуляр-
но-динамическими подходами [9, 43−46] − позво-
лит точнее находить глобальные минимумы и
энергетические барьеры в реакциях, протекаю-
щих в лабильных молекулярных системах (жид-
костях), подобных тем, которые изучались в на-
стоящей работе. Этому будут посвящены наши
дальнейшие исследования энергетики гидролиза
АТР. 

ПРИЛОЖЕНИЕ
Оценки энергии гидролиза АТР. Почему изме-

нение энергии ΔEATP, вычисленное квантово-хи-
мическим методом, может отличаться от экспе-
риментальных значений свободной энергии гид-
ролиза АТР до ADP и Pi (ΔGATP)? В реальных
биологических системах, энергия гидролиза АТР
(ΔGATP), как известно [3], определяется по фор-
муле: 

ΔGATP = ΔG'o + RT·ln K*. (П1)

В формуле (П1) слагаемое ΔG'o – это так назы-
ваемое «стандартное» изменение свободной
энергии, равное ΔG'o = −RT·ln Keq', где Keq'– кон-
станта равновесия реакции гидролиза АТР, R –
универсальная газовая постоянная, T – темпера-
тура (в градусах К). Константа равновесия Keq'
равна Keq' = 2·105 [3]. Отношение
K* = ([ADP]·[Pi]·[H+])/([ATP]) зависит от усло-
вий протекания реакции ATP + H2O ↔ ADP + Pi +
+ H+; в частности, зависит от того, насколько
концентрации реагентов далеки от равновесных
значений. В большинстве случаев в клетках бак-
терий и в энергопреобразующих органеллах кле-
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ток животных и растений, обнаруживаются высо-
кие (по сравнению с ADP) стационарные концен-
трации ATP [1]. Это означает, что исходная
система далека от состояния равновесия, для нее
K* << 1 и потому справедливо неравенство
|ΔGATP| > |ΔG'o|.

Как приведенное выше замечание соотносит-
ся с результатами наших расчетов? В исходном
состоянии в моделируемой системе присутствует
лишь одна молекула АТР, без продуктов реакции
ADP и Pi. С точки зрения формальных законов
химической термодинамики, это соответствует
тому, что справедливо условие K* << 1. Это озна-
чает, что исходная система далека от состояния
равновесия. В аналогичных экспериментальных
условиях измерения гидролиза АТР дадут боль-
шие изменения свободной энергии ΔGATP, чем в
«стандартных» условиях, то есть |ΔGATP| > |ΔG'o|.
Это согласуется с основным результатом кванто-
во-химических вычислений ΔEATP, верно отра-
жающим суть изучаемого явления − гидролиз
АТР до ADP и Pi в водной среде является энерго-
донорным процессом, в результате которого
энергия системы уменьшается (ΔЕATP < 0). Во-
прос об относительных вкладах энтальпийной
(ΔH) и энтропийной (–TΔS) составляющих изме-
нений свободной энергии гидролиза АТР
(ΔGATP = Δ H − TΔS) требует специального иссле-
дования. Согласно термохимическим данным 
[47, 48], энтальпийная составляющая ΔH вносит 
основной вклад в изменение свободной энергии
гидролиза АТР (ΔH'o ≈ −20 кДж/моль). 

Изотопные эффекты ионов Мg2+. Обратим
внимание на то, что при оценке влияния ионов
Мg2+ на электронные свойства молекулы АТР
следует учитывать возможный эффект стабиль-
ного изотопа 25Mg (≈10% от общего количества
Mg в природе), имеющего спин ядра 5/2. Как счи-
тают авторы работ [15, 16, 49, 50], изотопные эф-
фекты 25Mg могут сказываться на ферментатив-
ной активности белков, в каталитических цен-
трах которых находятся ионы 25Mg2+. Авторы
этих работ, на основании моделирования реак-
ции гидролиза АТР методом функционала плот-
ности (B3LYP/6-31G**, 310 K), обосновывают ги-
потезу о том, что ядерный спин 25Mg может вли-
ять на разложение АТР за счет образования ион-
радикальной пары (·Mg-ATP·), драматически
ускоряя гидролиз АТР. 
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 Quantum-Chemical Modelling of Adenosine Triphosphate Hydrolysis in Water Medium
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The hydrolysis of adenosine triphosphate to adenosine diphosphate and orthophosphate has been modeled
using the density functional method. Two systems were considered: adenosine triphosphate molecule in
aqueous solution and reaction products (adenosine diphosphate, orthophosphate and H+) uniformly sur-
rounded by water (nH2O = 80). Calculations showed that the hydrolysis of adenosine triphosphate is accom-
panied by a decrease in the total energy of the system, which is consistent with the ideas about the energy-
donor character of the reaction of adenosine triphosphate hydrolysis to adenosine diphosphate and ortho-
phosphate. In the absence of divalent cations, the energy reduction resulting from the hydrolysis of adenosine
triphosphate is ΔE = EADP+Pi − EATP ≈ −110 kJ/mol. Electrostatic interactions due to the presence of divalent
cations (Mg2+ or Ca2+) increase the hydrolysis energy (ΔE ≈ −135 kJ/mol). The results obtained are discussed
in the context of the energetic role of adenosine triphosphate in biological systems.
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