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Среди протеаз растительного происхождения цистеиновые папаиноподобные эндопептидазы, та-
кие как фицин, бромелин и папаин, занимают важное место благодаря их высокой протеолитиче-
ской активности в физиологическом диапазоне значений pH среды. Процессы термической агрега-
ции и автолиза молекул протеаз могут оказывать существенное влияние на их активность и соответ-
ственно перспективы практического применения. К настоящему времени механизмы агрегации
молекул белков еще недостаточно изучены, однозначно предсказать их агрегационную устойчи-
вость на основании аминокислотной последовательности пока не удается. В связи с этим целью ра-
боты было изучение процессов термической агрегации и автолиза молекул некоторых цистеиновых
протеаз. Установлено, что несмотря на схожие структурные и функциональные свойства фицина,
бромелина и папаина процессы их термической агрегации протекают с различной интенсивностью.
В частности, фицин и бромелин примерно сопоставимы по показателям их агрегационной устой-
чивости, тогда как папаин существенно менее подвержен процессам агрегации при воздействии по-
вышенных температур. Выдвинуто предположение о том, что на устойчивость названных цистеи-
новых протеаз к процессам агрегации существенное влияние оказывают наличие и конфигурация
внутренних структур молекулы, таких как полости, туннели и поры, а также зарядовые свойства ее
поверхности.

Ключевые слова: бромелин, фицин, папаин, агрегация, автолиз.

DOI: 10.31857/S0006302925020027,  EDN: LAHVSP

Протеазы – наиболее широко распро-
странeнные в промышленных процессах фермен-
ты, их доля составляет более 60% коммерчески
доступных препаратов [1]. Протеолитические
ферменты востребованы в самых разных обла-
стях: модификация пищевых продуктов [2], про-
изводство сыра [3], разделение рацемических
смесей [4], текстильная промышленность [5]. Бо-
лее того, в настоящее время растет интерес к кос-
метическим и фармацевтическим препаратам на
основе протеолитических ферментов [6]. Одной
из наиболее важных сфер применения протеаз
является гидролиз белков для получения функци-
ональных пептидов [7–11].

Среди протеаз растительного происхождения
цистеиновые папаиноподобные эндопептидазы,
такие как фицин, бромелин и папаин, занимают
важное место благодаря их высокой протеолити-
ческой активности в физиологическом диапазоне

значений pH среды [12]. Эти ферменты могут ка-
тализировать гидролиз широкого спектра связей,
включая пептидные и эфирные.

Растительные ферменты обладают рядом пре-
имуществ, включая их низкую стоимость, что де-
лает их перспективными компонентами для
лекарств, пищевых продуктов и косметических
добавок. С другой стороны, их способность рас-
щеплять пептидные связи делает растительные
ферменты привлекательными для био- и пище-
вых технологий, облегчая создание инновацион-
ных или стабильных пищевых продуктов. 

Фицин (КФ 3.4.22.3) выделяют из латекса рас-
тений рода Ficus. Он известен своей противогриб-
ковой активностью [13], способностью разрушать
биопленки Staphylococcus aureus, Staphylococcus
epidermidis [14], Streptococcus salivarius, Streptococcus
gordonii, Streptococcus mutans, Candida albicans [15],
а также ранозаживляющими свойствами [16]. 
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Бромелин (КФ 3.4.22.32) получают из стеблей
растений Ananas comosus. Фермент одобрен
управлением по контролю за продуктами и лекар-
ствами США и Европейским медицинским
агентством ЕС, рекомендуется для лечения ожо-
говых ран и является составной частью препарата
NexoBrid©, известного в США как Debrase [17, 18].
Кроме того, бромелин находит применение в
косметологии для лечения акне [19] из-за своей
эффективности против бактериальных пленок
[20].

Папаин (КФ 3.4.22.2) получают из растений
Carica papaya. Его используют при лечении легких
стадий непроходимости пищевода [21], спортив-
ных травм [22], угрей [23] и в различных стомато-
логических процедурах [24–26]. Папаин, как фи-
цин и бромелин, также проявляет антибиопле-
ночные свойства [27].

Все перечисленные ферменты принадлежат к
папаиноподобным цистеиновым протеазам, ко-
торые являются мономерными белками и харак-
теризуются консервативной структурой. Глобула
цистеиновой протеазы состоит из двух отдельных
доменов: α-спиральный (L-домен) и β-складча-
тый (R-домен), активный центр образуют остат-
ки цистеина и гистидина [28]. 

Воздействие повышенных температур может
вызывать разворачивание белковой глобулы с по-
следующей агрегацией развернутых молекул фер-
мента и снижение его активности [29], поэтому
изучение поведения ферментов в водных средах
при нагревании способствует теоретическим
представлениям о кинетике процессов его агрега-
ции. Подобные фундаментальные исследования
могут быть полезны при планировании техноло-
гических регламентов для практического приме-
нения папаиноподобных протеаз в различных от-
раслях промышленности, особенно в медицине,
фармацевтике и производстве продуктов пита-
ния, учитывая, что названные области часто
включают высокотемпературную обработку во
время стерилизации конечных продуктов [30–
32]. 

Известно, что потеря агрегационной устойчи-
вости приводит к снижению функциональных
свойств ферментных препаратов. Кроме того,
белковые агрегаты повышают иммуногенность
биологически активного компонента [33], сни-
жают его эффективность и биодоступность, а так-
же могут закупоривать капилляры [34]. С эконо-
мической точки зрения, склонность к агрегации
делает невозможной транспортировку препарата
в виде лиофилизата, что существенно влияет на
его стоимость [35, 36]. Зачастую участки, которые
склонны к неспецифическим взаимодействиям,
содержат высокий процент остатков тирозина,
триптофана, фенилаланина и аргинина [37–39].
Эти аминокислоты являются гидрофобными и

положительно заряженными, они участвуют в
π‒π-, π-катионных или катион-анионных взаи-
модействиях [40, 41]. Если подобные аминокис-
лоты объединяются в одной области, вероятность
их участия в неспецифических взаимодействиях
возрастает.

К настоящему времени механизмы агрегации
молекул белков еще недостаточно изучены, одно-
значно предсказать их агрегационную устойчи-
вость на основании аминокислотной последова-
тельности пока не удается. Однако в многочис-
ленных работах предлагаются все более точные
модели, связывающие третичную структуру по-
верхности молекулы фермента, получаемую в ре-
зультате моделирования, с измеряемыми свой-
ствами белковых растворов, например вязкостью
и скоростью агрегации [42–44]. Необходимо учи-
тывать, что для протеолитических ферментов
кроме процессов ассоциации-диссоциации ха-
рактерны также процессы автолиза, которые мо-
гут вносить существенный вклад в общую карти-
ну кинетики взаимодействия частиц в системе и
соответственно изменять ее свойства.

В связи с этим целью работы было изучение
процессов термической агрегации и автолиза в
водных растворах молекул некоторых цистеино-
вых протеаз, а именно фицина, бромелина и па-
паина. 

МАТЕРИАЛЫ И МЕТОДЫ
В качестве объектов исследования были вы-

браны фицин, бромелин и папаин фирмы Sigma
(США). 

Размеры молекул цистеиновых протеаз, их аг-
регатов и возможных продуктов автолиза опреде-
ляли методом динамического светорассеяния на
приборе Nano Zetasizer ZS (Malvern Instruments,
Великобритания). Обратный рассеянный свет от
He/Ne-лазера мощностью 4 мВт (632.8 нм) соби-
рали под углом 173° [45]. Концентрация белка в
0.1 М фосфатном буфере с рН 6.5 составляла 1, 5 и
10 мг/мл. Образец предварительно пропускали
через фильтр с диаметром пор 0.45 мкм (Millipore,
США) для удаления пыли и других посторонних
частиц. Гидродинамический радиус частиц рас-
считывали по уравнению Стокса–Эйнштейна.

Известно, что диаметр молекулы бромелина
составляет 4.553 нм [46], так как фицин и папаин
близки к бромелину по структуре и молекулярной
массе, размеры их молекул должны быть также
близки. Масса фицина составляет 24 кДа, броме-
лина – 23.4–35.7 кДа, папаина – 23.4 кДа [32, 47,
48]. 

В связи с этим в полученных массивах экспе-
риментальных данных мы выделили 4 размерных
группы частиц, присутствующих в исследуемой
системе. Частицы первой группы с радиусом ме-
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нее 2 нм, вероятно, соответствуют продуктам ав-
толиза фицина/бромелина/папаина, второй
группы с радиусом 2.0–2.5 нм – нативному фер-
менту, третьей группы с радиусом 2.5–4.5 нм –
молекулам протеазы с измененной простран-
ственной структурой, четвертой группы с радиу-
сом более 4.5 нм – агрегатам молекул фермента.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследование процессов ассоциации-диссоциа-
ции молекул фицина. При концентрации раствора
фицина 1 мг/мл средний радиус максимумов, со-
ответствующих нативной форме фермента, прак-
тически полностью совпадает при 50, 60 и 70°C.
При 80°C данный максимум отсутствует (рис. 1а).
Наибольшая высота указанного максимума при
наименьшей ширине наблюдается при 60°C, что,
вероятно, свидетельствует о более высоком коли-
честве молекул нативного фермента при данной
температуре. Кроме того, при названной темпе-
ратуре регистрируется максимум, соответствую-
щий продуктам автолиза. При 50 и 70°C максиму-
мы, соответствующие молекулам нативного фи-
цина и их агрегатам, сливаются в один, что может
говорить об образовании ряда переходных форм
фермента. Количество отдельных максимумов,
соответствующих агрегатам молекул фермента,

составляет 1 при 50 и 60°C, 2 при 70°C и 3 при
80°C.

В ходе инкубации раствора фицина с концен-
трацией 1 мг/мл при температурах 50 и 60°C на-
блюдается снижение количества молекул натив-
ного фермента на фоне роста количества агрега-
тов (рис. 2). 

После 11 мин инкубации при 50°C регистриру-
ется имеющий значительную ширину максимум,
соответствующий частицам с измененной про-
странственной структурой (рис. 1б), который, ве-
роятно, обусловлен конформационными измене-
ниями большого числа молекул фицина и образо-
ванием переходных форм между нативным
ферментом и его агрегатами.

Инкубация раствора фицина при 70°C пока-
зывает изменения количества частиц различного
радиуса в системе, не имеющие определенной за-
кономерности. При 80°C уже в начале инкубации
наблюдается полная агрегация частиц в растворе
фицина с концентрацией 1 мг/мл.

По прошествии полутора часов инкубации
при 70°C наблюдается уширение максимума, со-
ответствующего нативному фицину, что может
быть вызвано как нарушениями структуры моле-
кул фермента, так и диссоциацией их агрегатов.
При 80°C наблюдается слияние максимумов, со-
ответствующих агрегатам молекул фермента, что,
вероятно, обуславливается высокой степенью по-

Рис. 1. Распределение интенсивности рассеянного света (в %) по размерам частиц в начальный момент инкубации
раствора фицина с концентрацией 1 мг/мл (а), через 11 мин (б), 1.5 ч (в) и 3 ч (г) инкубации.
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Рис. 2. Зависимость количества молекул нативного фермента (а, в) и их агрегатов (б, г) от времени инкубации раствора
фицина с концентрацией 1 мг/мл при 50 и 60°C.

Таблица 1. Количество молекул нативного фицина и их агрегатов в начале и в конце времени трехчасовой
инкубации при концентрации образца 1 мг/мл

Температура 
образцов, °C

Нативная форма фицина Агрегаты молекул фицина

Количество частиц на 
момент начала 
инкубации, %

Количество частиц в 
конце инкубации, %

Количество частиц на 
момент начала 
инкубации, %

Количество частиц в 
конце инкубации, %

50 96.3 27.0 3.7 73.0

60 69.1 52.6 25.0 47.4

70 67.8 24.8 28.3 75.2

80 0 0 100 100

лидисперсности частиц данной размерной груп-
пы (рис. 1в).

После 3 ч инкубации раствора фицина с кон-
центрацией 1 мг/мл наименьшая степень агрега-
ции наблюдается при 60°C: молекулы нативного
фермента количественно преобладают над агре-
гатами (табл. 1). Инкубация при 80°C показывает
полное отсутствие максимума, соответствующего
нативной форме белковой глобулы (рис. 1г). Сте-
пень агрегации молекул фицина при 50 и 70°C
сходна, однако в первом случае имеет место зна-
чительно больший прирост количества агрегатов
в сравнении с началом инкубации. Кроме того,

при 50°C наблюдается наименьшая полидисперс-
ность частиц в растворе.

В начале инкубации раствора фицина с кон-
центрацией 5 мг/мл при всех исследуемых темпе-
ратурах наблюдается уширение максимума, соот-
ветствующего нативной форме фермента, что
может свидетельствовать о нарушении простран-
ственной структуры молекул уже в начальный
момент температурного воздействия. Кроме того,
при 50, 60 и 80°C максимумы, соответствующие
нативным молекулам и их агрегатам, сливаются в
один, что указывает на образование переходных
форм между частицами данных размерных групп.
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Рис. 3. Распределение интенсивности рассеянного света по размерам частиц в начальный момент (а) и через 3 ч (б)
инкубации раствора фицина с концентрацией 5 мг/мл при 50, 60, 70 и 80°C.

Инкубация при 50 и 80°C характеризуется появ-
лением вначале инкубации дополнительного
максимума, соответствующего агрегатам молекул
фицина (рис. 3а).

В ходе инкубации раствора фицина с концен-
трацией 5 мг/мл снижение количества молекул
нативного фермента на фоне роста количества аг-
регатов наблюдается при всех исследуемых тем-
пературах (50, 60, 70 и 80°C) (рис. 4), интенсив-
ность процессов агрегации возрастает по сравне-
нию с таковыми при концентрации фермента
1 мг/мл (рис. 5).

В конце периода инкубации раствора фицина
с концентрацией 5 мг/мл при 60°C наблюдается
полная агрегация частиц в исследуемой системе
(табл. 2, рис. 3б). Инкубация при 50, 70 и 80°C ха-
рактеризуется наличием как нативных молекул
фермента, так и их агрегатов, с преобладанием
последних.

В начале инкубации раствора фицина с кон-
центрацией 10 мг/мл при 50 и 60°C наблюдается
уширение максимума, соответствующего натив-
ным молекулам фермента. Кроме того, данный
максимум при указанных температурах сливается

с максимумом, соответствующим агрегатам мо-
лекул белка. Обозначенные явления могут быть
обусловлены высокой степенью полидисперсно-
сти раствора фицина, связанной, вероятно, с вы-
сокой степенью конформационной лабильности
фермента и образованием множества переходных
форм. При 70 и 80°C максимум, соответствую-
щий нативной форме фермента, отсутствует, од-
нако регистрируется максимум, соответствую-
щий молекулам с нарушенной пространственной
структурой (рис. 6а).

Инкубация раствора фицина с концентрацией
10 мг/мл показывает наибольшую интенсивность
процессов агрегации: количество агрегатов в си-
стеме достигает 100% при 50 и 60°C после 18 мин,
при 70°C после 7 мин, при 80°C – после 3 мин ин-
кубации. Однако при 60, 70 и 80°C по прошествии
2, 2.5 и 1 ч после начала инкубации соответствен-
но наблюдается выпадение осадка, за счет чего
снижается число агрегатов в растворе (рис. 7).
Кроме того, регистрируется дальнейшее сниже-
ние количества агрегатов, обусловленное появле-
нием и ростом количества продуктов автолиза,

Таблица 2. Количество молекул нативного фицина и их агрегатов в начале и в конце времени трехчасовой
инкубации при концентрации образца 5 мг/мл

Температура 
образцов, °C

Нативная форма фицина Агрегаты молекул фицина

Количество частиц на 
момент начала 
инкубации, %

Количество частиц в 
конце инкубации, %

Количество частиц на 
момент начала 
инкубации, %

Количество частиц в 
конце инкубации, %

50 66.7 12.0 33.3 88.0

60 43.4 0 56.6 100

70 87.1 14.3 12.9 85.7

80 97.8 22.2 2.2 77.8
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нативных молекул фермента и молекул с нару-
шенной пространственной структурой.

При 50°C процессы образования агрегатов
подчиняются логарифмической зависимости на

начальных этапах инкубации и не регистрируют-
ся после 1.5 ч инкубации (рис. 7а).

При 60, 70 и 80°C к концу времени инкубации
обнаруживаются максимумы, соответствующие

Рис. 4. Зависимость количества молекул нативного фермента (а, в, д, ж) и их агрегатов (б, г, е, з) от времени инкубации
раствора фицина с концентрацией 5 мг/мл при 50, 60, 70 и 80°C.
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Рис. 5. Зависимость количества молекул нативного фермента (а, в, д, ж) и их агрегатов (б, г, е, з) от времени инкубации
растворов фицина с концентрациями 1 и 5 мг/мл при 50, 60, 70 и 80°C.



232

БИОФИЗИКА  том 70  № 2  2025

ХОЛЯВКА и др.

нативной форме фицина, что может быть связано
с выпадением части агрегатов в осадок и сниже-
нием их доли в растворе (рис. 6б). 

Исследование процессов ассоциации-диссоциа-
ции молекул бромелина при различных значениях
температуры методом динамического светорассея-
ния. Средний радиус максимумов, соответствую-
щих нативной форме бромелина, практически
полностью совпадает при 50 и 60°C (рис. 8а). Од-

нако интенсивность и ширина полосы в них от-
личаются, что может свидетельствовать как о раз-
личном количестве нативных молекул протеазы в
начальный момент инкубации, так и о разнице в
степени конформационной лабильности и, как
следствие, полидисперсности форм фермента
при 50 и 60°C. При 50°C регистрируется макси-
мум, указывающий на присутствие продуктов ав-
толиза. Максимумы, соответствующие агрегатам

Рис. 6. Распределение интенсивности рассеянного света по размерам частиц в начальный момент (а) и через 3 ч (б)
инкубации раствора фицина с концентрацией 10 мг/мл при 50, 60, 70 и 80°C.

Рис. 7. Зависимость количества агрегатов от времени инкубации раствора фицина с концентрацией 10 мг/мл при 50°C
(а), 60°C (б), 70°C (в) и 80°C (г).
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Рис. 8. Распределение интенсивности рассеянного света по размерам частиц в начальный момент инкубации раствора
бромелина с концентрацией 1 мг/мл при 50 и 60°C (а) и в конце периода инкубации (через 3 ч) при 50°C (б) и 60°C (в). 

Рис. 9. Зависимость количества молекул нативного фермента (а, в) и их агрегатов (б, г) от времени инкубации раствора
бромелина с концентрацией 1 мг/мл при 50 и 60°C.
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молекул фермента, также практически полно-
стью совпадают по радиусу с незначительным от-
личием по интенсивности. При 60°C регистриру-
ется появление дополнительного максимума.

В ходе инкубации раствора бромелина при
50°C в течение первых 70 мин регистрируется
рост количества молекул нативного фермента на
фоне снижения количества агрегатов. Параллель-
но с этим возрастает количество продуктов авто-
лиза, наличие которых регистрируется уже с на-
чала инкубации. Однако по прошествии полутора
часов количество молекул нативного фермента
значительно снижается на фоне роста количества
агрегатов (рис. 9а,б). 

В конце периода инкубации наблюдается зна-
чительное преобладание агрегатов; регистрирует-
ся два максимума, соответствующих частицам
данной размерной группы (рис. 8б).

Инкубация раствора бромелина с концентра-
цией 1 мг/мл при 60°C показывает снижение ко-
личества молекул нативного фермента на фоне
роста количества агрегатов с полной агрегацией
частиц в исследуемой системе через 40 мин (8в, 9в
и 9г). 

При 70°C полная агрегация частиц в исследуе-
мой системе наблюдается уже с первой минуты
инкубации.

Исследование процессов ассоциации-диссоциа-
ции молекул папаина при различных значениях тем-
пературы методом динамического светорассеяния.
Средний радиус максимумов, соответствующих
нативной форме папаина, практически полно-
стью совпадает при всех исследуемых температу-
рах при изучении раствора в концентрации
1 мг/мл (рис. 10а). Однако интенсивность и
ширина полосы в них отличаются, что может сви-
детельствовать как о различном количестве на-
тивных молекул протеазы в начальный момент
инкубации, так и о разнице в степени конформа-
ционной лабильности и, как следствие, полидис-
персности форм фермента при 60, 70 и 80°C. На-
блюдается различная степень агрегации частиц:
максимум, соответствующий агрегатам, отлича-
ется при всех исследуемых температурах по
значению радиуса, интенсивности и ширине по-
лосы. Более выраженные процессы агрегации ре-
гистрируются при 80°C, о чем также свидетель-
ствует появление дополнительного максимума
агрегатов.

Рис. 10. Распределение интенсивности рассеянного света (%) по размерам частиц: (а) – в начальный момент
инкубации раствора папаина с концентрацией 1 мг/мл при 60, 70 и 80°C; (б) – через 1.5 ч инкубации при 60 и 70°C;
(в) – через 100 мин при 80°C; (г) – через 3 ч при 60 и 70°C.
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В ходе инкубации раствора папаина с концен-
трацией 1 мг/мл при температурах 60, 70 и 80°C
наблюдалось снижение количества нативного
фермента на фоне роста количества агрегатов
(рис. 11). При всех исследуемых температурах
процессы агрегации детектировались уже с нача-
ла инкубации.

После полутора часов инкубации раствора па-
паина интенсивность максимума, соответствую-
щего его нативной форме, при 70°C превышает
таковую при 60°C, что, вероятно, обусловлено
выпадением агрегатов молекул фермента в осадок
при 70°C (рис. 10а). При 60°C обнаруживается до-
полнительный максимум, соответствующий
крупным агрегатам молекул папаина.

В конце времени инкубации раствора папаина
при 60 и 70°C регистрируются близкие значения
количества молекул нативного папаина и их агре-
гатов с незначительным преобладанием натив-
ной формы фермента (табл. 3). Однако распреде-
ление интенсивности рассеянного света по
размерам частиц в значительной степени разли-
чается при указанных температурах. Инкубация
при 60°C показывает меньшую интенсивность
максимумов, соответствующих нативной форме
папаина и агрегатам, при большей их ширине,
что может указывать на более высокую степень
полидисперсности форм фермента (рис. 10г).

При 80°C наблюдается количественное преоб-
ладание агрегатов молекул фермента в течение
всего времени инкубации. Кроме того, при

Рис. 11. Зависимость количества молекул нативного фермента (а, в, д) и их агрегатов (б, г, е) от времени инкубации
раствора папаина с концентрацией 1 мг/мл при 60, 70 и 80°C.
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данной температуре наличие нативной формы
папаина не регистрируется после 100 мин инку-
бации (рис. 10в). Также при 80°C наблюдается
наибольший прирост количества агрегатов
(табл. 3).

Сравнение интенсивности процессов термиче-
ской агрегации и автолиза молекул бромелина, фи-
цина, папаина. Из полученных нами результатов
отчетливо видно, что несмотря на схожие струк-
турные и функциональные свойства фицина,
бромелина и папаина процессы их термической
агрегации протекают с различной интенсивно-
стью. В частности, фицин и бромелин примерно
сопоставимы по показателям их агрегационной
устойчивости, тогда как папаин существенно ме-
нее подвержен процессам агрегации при воздей-
ствии температур 60, 70 и 80°C. Этот факт хорошо
коррелирует с особенностями пространственных
структур молекул названных цистеиновых проте-
аз. Известно, что внутренние структуры молекул
белков – внутренние полости, туннели и поры –
могут влиять на термостабильность ферментов и
их устойчивость к агрегации. Ранее в наших рабо-
тах было показано, что бромелин и фицин имеют
сходную локализацию внутренних полостей, в
отличие от папаина, молекула которого в своем
составе не содержит полостей, имеющих локали-
зацию, близкую с таковой для названных фер-
ментов. При этом бромелин характеризуется наи-
меньшей степенью компактизации в связи с наи-
большим количеством и объемом внутренних
структур [49]. Кроме того, нами было показано,
что молекулы фицина, бромелина и папаина от-
личаются друг от друга по зарядовым свойствам.
Процентное содержание положительно заряжен-
ных остатков при рН 7.4 существенно превышает
таковое для отрицательно заряженных аминокис-
лот на поверхности глобул папаина (17% положи-
тельно заряженных и 8% отрицательно заряжен-
ных остатков) и бромелина (21 и 8% остатков со-
ответственно). Для молекулы фицина количество
положительно заряженных остатков составляет
21%, а отрицательно заряженных – 22%. При
этом количество незаряженных остатков на по-
верхности молекул сопоставимо по значению и
составляет 27% для фицина, 30% для бромелина и

31% для папаина [50]. Таким образом, логично
предположить, что на устойчивость к процессам
агрегации существенное влияние оказывает не
столько аминокислотная последовательность
фермента, сколько особенности его простран-
ственной организации (а именно, наличие и кон-
фигурация внутренних структур молекулы, таких
как полости, туннели и поры) и зарядовые свой-
ства поверхности молекулы.

ЗАКЛЮЧЕНИЕ

Из изложенного в статье материала можно
сделать вывод о том, что в случае цистеиновых
протеаз – бромелина, фицина, папаина – высо-
кая степень сходства их пространственной орга-
низации и функциональных свойств не гаранти-
рует совпадения стадий процессов их термиче-
ской агрегации. Папаин при воздействии
повышенных температур значительно менее под-
вержен процессам агрегации, чем фицин и бро-
мелин, которые сопоставимы по параметрам их
агрегационной устойчивости. При этом папаин
не содержит внутренних полостей, имеющих ло-
кализацию, близкую с таковой для молекул фи-
цина и бромелина. Логично предположить, что
различия в устойчивости названных протеаз к
процессам термической агрегации обусловлены
отличиями в объеме и конфигурации внутренних
структур их молекул, таких как полости, туннели
и поры, а также в зарядовых свойствах поверхно-
сти их белковых глобул.
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Таблица 3. Количество молекул нативного папаина и их агрегатов в начале и в конце времени трехчасовой
инкубации при концентрации образца 1 мг/мл

Температура 
образцов, °C

Нативная форма папаина Агрегаты молекул папаина

Количество частиц на 
момент начала 
инкубации, %

Количество частиц в 
конце инкубации, %

Количество частиц на 
момент начала 
инкубации, %

Количество частиц в 
конце инкубации, %

60 79.7 58.2 20.3 41.8

70 79.1 58.3 20.9 41.7
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 Processes of Thermal Aggregation and Autolysis of Cysteine Protease Molecules – 
Bromelain, Ficin, and Papain
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Among plant proteases, cysteine papain-like endopeptidases such as ficin, bromelain and papain occupy an
important place due to their high proteolytic activity in the physiological pH range of the medium. The pro-
cesses of thermal aggregation and autolysis of protease molecules can have a significant influence on their ac-
tivity and, consequently, on the prospects of practical application. To date, the mechanisms of aggregation of
protein molecules are still insufficiently studied, and it is still impossible to predict unambiguously their ag-
gregation stability on the basis of amino acid sequence. In this connection, the aim of this work was to study
the processes of thermal aggregation and autolysis of molecules of some cysteine proteases. It was found that
despite similar structural and functional properties of ficin, bromelain and papain, their thermal aggregation
processes proceed with different intensity. In particular, ficin and bromelain are approximately comparable
in terms of their aggregation stability, whereas papain is significantly less susceptible to aggregation processes
when exposed to elevated temperatures. It is suggested that the presence and configuration of internal struc-
tures of the molecule, such as cavities, tunnels, and pores, as well as the charge properties of its surface have
a significant influence on the stability of these cysteine proteases to aggregation processes.

Keywords: bromelain, ficin, papain, aggregation, autolysis
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