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Описаны результаты сравнительного исследования переноса электронов в хлоропластах in situ
в листьях теневыносливого и светолюбивого видов традесканции (T. fluminensis и
T. sillamontana), выращенных в условиях сильного (800–1000 мкмоль фотонов м−2с−1) или слабо-
го (умеренного) освещения (50–125 мкмоль фотонов м−2с−1). За процессами транспорта электро-
нов следили методами электронного парамагнитного резонанса и оптической спектроско-
пии. Изучены фотоиндуцированные редокс-превращения первичного донора электронов фотоси-
стемы I (Р700) и медленная индукция флуоресценции хлорофилла а. Показано, что растения,
акклимированные к высокой интенсивности света, характеризуются более быстрыми процессами
окисления Р700 и затухания флуоресценции хлорофилла а по сравнению с растениями, выращен-
ными при низкой интенсивности света. Полученные данные анализируются в контексте «кратко-
срочных» механизмов рН-зависимой регуляции электронного транспорта в интактных хлоропла-
стах (нефотохимическое тушение возбуждения в фотосистеме II, замедление окисления пластохи-
нола цитохромным b6f-комплексом, активация реакций цикла Кальвина−Бенсона).
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Выяснение механизмов регуляции электрон-
ного и протонного транспорта в фотосинтетиче-
ских системах − актуальная задача биофизики фо-
тосинтеза. В мембранах фотосинтетического аппа-
рата (ФСА) оксигенных организмов (растения,
водоросли и цианобактерии) находятся пигмент-
белковые комплексы фотосистемы I (ФС I) и фото-
системы II (ФС II), которые поглощают свет и пере-
дают энергию от светособирающих антенн к реак-
ционным центрам [1–3]. В реакционных центрах
ФС I и ФС II происходит разделение зарядов и ини-
циируется перенос электронов от молекул воды,
разлагаемых в ФС II (2Н2О → О2 + 4е− + 4Н+), к мо-
лекуле NADP+, восстанавливаемой до NADPH.

Перенос электронов по цепи электронного транс-
порта сопряжен с образованием транс-мембран-
ной разности электрохимических потенциалов
ионов водорода (ΔμH+). За счет энергии ΔμH+ в
АТP-синтазном комплексе (CF0−CF1) образуют-
ся молекулы АТP из ADP и неорганического фос-
фата (ортофосфат, Pi). В строме хлоропластов
(пространство между оболочкой хлоропласта и
тилакоидами – замкнутыми мембранными вези-
кулами, содержащими белковые комплексы
ФСА), находятся ферменты цикла Кальвина–
Бенсона (ЦКБ), катализирующие восстановле-
ние СО2 и образование углеводов за счет энергии
молекул NADPH и АТР [1–3]. 

Цепь электронного транспорта хлоропластов.
Схема основных процессов фотосинтетического
транспорта электронов в хлоропластах и регуля-
торных связей, обеспечивающих оптимизацию
световых стадий фотосинтеза, показана на рис. 1.
На этом рисунке обозначены следующие пути
переноса электронов: 1) нециклический пе-

Сокращения: ФСА – фотосинтетический аппарат, ФС I –
фотосистема I, ФС II – фотосистема II, ЦКБ – цикл Каль-
вина–Бенсона, НЭТ – нециклический электронный
транспорт, Fd – ферредоксин, FNR – ферредоксин-
NADP-редуктаза, ЦЭТ – циклический электронный
транспорт, PQH2 – пластохинол, Хл – хлорофилл, ЭПР –
электронный парамагнитный резонанс. 
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ренос электронов от ФС II к ФС I и далее к
NADP+; 2) циклический перенос вокруг ФС I
по цепи, включающей пластохинон;
3) псевдоциклический транспорт электронов
с участием молекулярного кислорода (О2) в
качестве акцептора электрона в ФС I. Опти-
мальное распределение электронных потоков по
этим цепям играет важную роль в регуляции ФСА
[4−11]. 

Нециклический электронный транспорт
(НЭТ) обеспечивает образование восстановлен-
ных молекул NADPH за счет электронов, посту-
пающих в цепь электронного транспорта от ФС II
(Н2О → ФС II → PQ → b6 f → ФС I → Fd → NADP+).
Цитохромный комплекс b6 f служит промежуточ-
ным звеном в цепи переноса электронов между
ФС II и ФС I [5, 12−16]. Мобильным акцептором
электрона, донируемого ФС I, является ферре-
доксин (Fd). От восстановленного ферредоксина
(Fd−) электроны могут поступать в разные цепи.
Два электрона от двух молекул Fd− переносятся
на молекулу NADP+ через ферредоксин-NADP-
редуктазу (FNR). Дважды восстановленная моле-
кула NADP−  протонируется за счет ионов водорода,
поступающих из стромы (NADP− + Н+ → NADPН).
Защелачивание стромы (увеличение pHout) спо-
собствует активации ферментов ЦКБ, ускоряя
потребление NADPН и ATР.

При циклическом электронном транспорте
(ЦЭТ) вокруг ФС I (рис. 1, разные пути ЦЭТ

символически обозначены как CET1 и NDH-1)
электроны от восстановленных молекул Fd− воз-
вращаются в цепь переноса электронов на участ-
ке между ФС II и ФС I, включающим пластохи-
ноновый пул PQ/PQH2 [9−16]. От пластохинола
(PQH2) электроны поступают через цитохром-
ный комплекс b6 f и пластоцианин к окисленным
центрам . В ЦЭТ вокруг ФС I, обозначенным
на рис. 1 как CET1, непосредственную роль игра-
ют связанные с комплексом b6 f белки PGR5 и
PGRL1, катализирующие восстановление пла-
стохинона (PQ → PQH2) [10]. Второй путь ЦЭТ
вокруг ФС I − перенос электронов от Fd− к PQ че-
рез комплекс NDH-1, являющийся гомологом
митохондриального комплекса 1 [11]. 

Альтернативное направление оттока электро-
нов от ФС I – перенос электрона на молекулу О2
(реакция Мелера [17–19]). Появляющиеся в ре-
зультате этой реакции супероксидные радикалы
( ) дисмутируют с образованием пероксида
водорода (Н2О2) и молекулярного кислорода

(2 + 2Н+ → Н2О2 + О2); молекулы Н2О2 разла-
гаются каталазой до О2 и воды. В итоге электроны
от воды, окисляемой в ФС II, переносятся к мо-
лекулярному кислороду О2; конечным продуктом
этого цикла оказывается молекула воды (псевдо-
циклический транспорт электронов, цикл «вода–
вода»: Н2О → ФС II → ФС I → О2 → Н2О [17, 18]).
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Рис. 1. Схема потоков электронов и протонов в хлоропластах и рН-зависимые механизмы регуляции электронного
транспорта. Обозначения: ФС I и ФС II – фотосистема I и фотосистема II, b6 f – цитохромный комплекс, СЕТ1 –
циклический путь переноса электронов вокруг ФС I, CF0-CF1 – АТР-синтаза, Fd – ферредоксин, FNR –
ферредоксин-NADP-редуктаза, NDH-1 – путь переноса электронов, катализируемый комплексом NDH-1, PQ и
PQH2 – пластохинон и пластохинол, Pc – пластоцианин, QA и QB – молекулы первичного и вторичного
пластохинона, восстанавливаемые за счет ФС II, ЦКБ – цикл Кальвина-Бенсона.
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По разным источникам вклад цикла «вода–вода»
может составлять от 10 до 60% от нециклического
потока электронов [17−19]. Циклический и псев-
доциклический пути переноса электронов не свя-
заны с потреблением NADPH в ЦКБ, но сопря-
жены с переносом протонов в люмен, что способ-
ствует работе АТР-синтазы и образованию АТР. 

Регуляция фотосинтетического транспорта
электронов. Условия произрастания растения из-
менчивы (флуктуации температуры, варьирова-
ние интенсивности и спектрального состава све-
та, условий питания и газового состава атмосфе-
ры). У фотосинтезирующих организмов окси-
генного типа оптимизация работы ФСА обеспе-
чивается за счет сравнительно быстрых (секун-
ды−минуты) и медленных (часы–сутки) меха-
низмов регуляции фотосинтетических процессов
[20−22]. Быстрые процессы регуляции обусловле-
ны активацией/деактивацией ферментов ЦКБ,
перераспределением энергии поглощаемого све-
та между ФС I и ФС II в результате миграции мо-
бильных светособирающих комплексов и умень-
шении активности ФС II при избытке освещения
[23]. Ключевую роль в регуляции этих процессов
играют изменения рН люмена (внутритилакоид-
ного объема, рНin) и рН стромы (рНout), которые
влияют на активность ФС II [24, 25], скорость пе-
реноса электронов между ФС II и ФС I [26−29] и
активацию ЦКБ [1]. Медленные механизмы регу-
ляции фотосинтетических процессов связаны с
изменениями экспрессии белков ФСА [30−35].
Кроме этого, хлоропласты могут изменять свое
положение в клетках растений, приближаясь к
поверхности клетки для более эффективного по-
глощения света или удаляясь от поверхности
клетки, что позволяет избежать повреждений
ФСА при избытке света [36, 37]. Адаптация ФСА
к условиям освещения способствует повышению
светосбора при слабой освещенности и защите
ФСА от избыточного освещения на сильном све-
ту. 

У растений ФСА зависит от условий их произ-
растания; ФСА чувствителен к флуктуациям
освещения и температуры [38, 39]. Одним из фак-
торов, определяющих эффективное функциони-
рование хлоропластов при варьировании темпе-
ратуры, является регулирование микровязкости
липидного бислоя тилакоидной мембраны [40−
42]. Структурно-функциональные свойства ФСА
растений зависят от вида и рода растений, произ-
растающих в определенной климатической зоне.
Сравнение фотосинтетических свойств родствен-
ных видов растений позволяет выявить различия,
проявляющиеся при выращивании (при «аккли-
мации») растений. В то же время растения одного
рода могут проявлять сходные свойства, приобре-
тенные ими в ходе биологической эволюции
(процесс «адаптации» растений). В этой связи не-

сомненный интерес представляют сравнитель-
ные исследования фотосинтетических свойств
«контрастных» видов и экотипов растений одного
рода, которые в ходе биологической эволюции
адаптировались к условиям обитания в климати-
ческих зонах с разными условиями освещения.
Такими родственными видами могут служить,
например, теневыносливые или светолюбивые
виды растений, произрастающие в районах с уме-
ренной или высокой освещенностью (например,
теневыносливые или светолюбивые виды траде-
сканций [43−45], растения рода Cucumis –
C. sativus (огурец) и C. melo (дыня) [41, 46]). 

В настоящей работе описаны результаты ис-
следования индукционных процессов1 в хлоро-
пластах in situ в листьях двух видов традесканции
(теневыносливый вид T. fluminensis и светолюби-
вый вид T. sillamontana), выращенных в лабора-
торных условиях при высокой или низкой (уме-
ренной) интенсивности света. Нами были изуче-
ны редокс-превращения реакционного центра
ФС I (Р700) и фотоиндуцированные изменения
выхода флуоресценции хлорофилла (Хл) а. Пока-
зано, что растения, выращенные при высокой
интенсивности света, характеризуются более
быстрыми процессами фотоиндуцированного
окисления Р700 и затухания флуоресценции Хл а
по сравнению с растениями, выращенными при
низкой (умеренной) интенсивности света. Эти
наблюдения отражают способность ФСА расте-
ний, акклимированных к сильному свету, быст-
рее реагировать на флуктуации интенсивности
света.  

МАТЕРИАЛЫ И МЕТОДЫ
Растения. Объектами исследования служили

листья двух видов традесканции (T. fluminensis и
T. sillamontana), проростки которых были получе-
ны из Главного ботанического сада РАН
(Москва). Растения выращивали в почвенной
культуре при комнатной температуре (24–26°C) и
относительной влажности 40–60% согласно

 1 Общепринятым термином «индукционные явления» [1, 47−
49] мы называем фотосинтетические процессы (например,
немонотонные изменения интенсивности флуоресценции
или многофазную кинетику редокс-превращений Р700),
которые происходят в листьях, выдержанных в
определенных условиях (предварительное освещение и
адаптация к темноте) непосредственно перед началом
измерений. Когда мы говорим о лабораторных растениях,
выращенных при том или ином освещении, мы
используем термин «акклимация» растений. Подчеркнем,
что термин «акклимация» не следует путать с термином
«адаптация» образца, означающим, что непосредственно
перед измерениями фотосинтетических показателей
листьев (см. рис. 2–5) мы стандартизируем состояние
исследуемого образца, взятого из растения, выращенного
при том или ином освещении; например, мы выдерживаем
(«адаптируем») образец определенное время в темноте
перед началом измерения. 
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протоколу, описанному ранее [43, 44, 46]. Дли-
тельность светового периода в дневное время со-
ставляла 12 ч. Потоки света составляли 800–
1000 мкмоль фотонов м−2с−1 («сильный» свет,
который для краткости обозначен как HL, high
light) или 50–125 мкмоль фотонов м−2с−1 («сла-
бый» свет, обозначаемый как LL, low light). Расте-
ния, акклимированные к сильному или слабому
свету, мы будем для краткости называть «HL-рас-
тениями» или «LL-растениями», соответственно. 

Для измерений фотосинтетических показате-
лей листьев использовали второй или третий зре-
лый лист, расположенный в верхней части побе-
га. При измерениях характеристик листа с помо-
щью ЭПР и оптических методов образец
освещали с дорзальной стороны листа, обращен-
ной в сторону верхнего эпидермиса. Общие зако-
номерности кинетики изменений указанных вы-
ше биофизических показателей листьев
T. fluminenesis и T. sillamontana, изученные в раз-
ные сезоны, были одинаковыми. Для иллюстра-
ции этих закономерностей мы приводим ниже
результаты наших исследований, проведенных в
2021–2022 гг. 

Электронный парамагнитный резонанс (ЭПР).
По величине характерного сигнала ЭПР от окис-
ленных центров P700

+  (рис. 5а) удобно следить за
функционированием ЭТЦ хлоропластов в клет-
ках растений in situ [50, 51]. Образец (кусочек ли-
ста размерами 4 × 25 мм) помещали в хорошо вен-
тилируемый держатель, который закрепляли в

прямоугольном резонаторе ЭПР-спектрометра
модели Е-4 (Varian, США). Мощность микровол-
нового излучения составляла 10 мВт, амплитуда
ВЧ-модуляции была равна 0.4 мТл. Образцы
освещали белым светом (320 Вт·м−2), эффективно
возбуждающим ФС I и ФС II, или дальним крас-
ным светом с λмакс = 707 нм (Δλ1/2 = 5 нм) интен-
сивностью 8 Вт·м−2, возбуждающим преимуще-
ственно ФС I. За кинетикой редокс-превращений
P700 следили по величине низкополевого экстре-
мума первой производной сигнала ЭПР от P700

+

(рис. 5а). Условия освещения и особенности ре-
гистрации сигнала ЭПР подробно описаны в на-
ших работах [44−46, 50, 51].

Оптические измерения редокс-превращений
Р700. Наряду с техникой ЭПР-спектроскопии для
регистрации P700

+  мы использовали спектрометр
DUAL-PAM-100 (Walz, Германия), который поз-
воляет диагностировать одновременно состояние
P700 и изучать индукцию флуоресценции Хл а.
Об окислении P700 судили по изменениям
разности поглощения света при 870 и 830 нм
(DUAL-PAM-100 DUAL-PAM/F MANUAL,
Heinz Walz GmbH [52–54]). Образец (кусочек ли-
ста или непосредственно сам лист) помещали в
держатель прибора между блоками DUAL-DB и
DUAL-E. В качестве «актиничного» (действую-
щего) света, возбуждающего обе фотосистемы
(ФС I и ФС II), использовали создаваемый свето-
диодом красный свет с длиной волны

Рис. 2. Типичные кинетики светоиндуцированных изменений выхода флуоресценции Хл а (индукционные кривые) в
листьях растений T. fluminensis (а) и T. sillamontana (б), выращенных при высокой (HL) или умеренной (низкой, LL)
интенсивности света. Перед началом измерений образцы для стандартизации освещали в течение 2 минут
актиничным светом (λмакс = 635 нм), поток которого составлял 1000 мкмоль фотонов м−2с−1, а затем в течение 10 
мин адаптировали к темноте. Представленные кривые переменной флуоресценции нормированы на максимальную 
интенсивность сигнала, отмеченную символом Р. 
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λмакс = 635 нм. Поток красного света составлял
1000  мкмоль   фотонов м−2с−1.  Интенсивность
слабого измерительного света (λмакс = 635 нм)
была равна 9 мкмоль фотонов м−2с−1. Для пре-
имущественного возбуждения ФС I и определе-
ния максимального уровня окисленных центров
Р700

+  использовали дальний красный свет от свето-
диода с λмакс = 720 нм, поток квантов дальнего крас-
ного света был равен 500 мкмоль фотонов м−2с−1.
Протоколы кинетических измерений приведены
в подписях к соответствующим рисункам. 

Кинетика медленной индукции флуоресценции
Хл а. Кинетику изменений выхода флуоресцен-
ции Хл а в листьях (эффект Каутского [47−49]) из-
меряли с помощью спектрометра DUAL-PAM-100,
длина волны измерительного света
λмакс = 460 нм. Методика этих измерений была
подробно описана нами ранее [43–46]. Перед на-
чалом измерений образец адаптировали к акти-
ничному свету (2 минуты), поток которого со-
ставлял 1000 мкмоль фотонов м−2с−1; затем обра-
зец выдерживали в темноте в течениe 10 мин.
После этого измеряли кинетику индукции флуо-
ресценции Хл а по следующему протоколу: осве-
щение 4 мин красным светом, затем, после тем-
новой паузы (1 минута), включали дальний крас-
ный света на 10 с и подавали насыщающий
импульса света длительностью 300 мс. После вы-
ключения насыщающего импульса света и даль-
него красного света образец находился в
темноте в течении 10 мин. Поток дальнего крас-
ного света составлял 500 мкмоль фотонов м−2с−1. 
Поток измерительного света был равен
9 мкмоль фотонов м−2с−1.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 

Кинетика медленной индукции флуоресценции
Хл а. На рис. 2 приведены кинетики фотоиндуци-
рованных изменений интенсивности флуорес-
ценции Хл а в листьях растений T. fluminensis (те-
невыносливый вид) и T. sillamontana (светолюби-
вый вид), выращенных при высокой (HL) или
низкой (умеренной) интенсивности света (LL).
Представленные на этом рисунке кривые – суть
изменения интенсивности флуоресценции («пе-
ременная» флуоресценция ΔF = F(t) – F0), отсчи-
тываемой от исходного уровня F0 (отмечен сим-
волом «О»), измеряемого до включения красного
актиничного света (λмакс = 635 нм). Исходный
уровень флуоресценции F0, измеряемой до вклю-
чения непрерывного актиничного света, состав-
лял 20% от максимальной интенсивности флуо-
ресценции, измеряемой при действии короткой
насыщающей вспышки. Все показанные на рис. 2

индукционные кривые нормированы на макси-
мальную амплитуду переменной флуоресценции
(величина О-Р). 

Из рис. 2 видно, что в ответ на включение ак-
тиничного света сначала наблюдается быстрый
рост интенсивности флуоресценции Хл а до уров-
ня Р (время достижения максимального уровня Р
не превышало ≈0.5 с). Кинетика быстрой фазы
роста флуоресценции (О-Р) в листьях
T. fluminensis и T. sillamontana, адаптированных к
темноте в течение 10 мин, называемая кинетикой
быстрой индукции флуоресценции, была подроб-
но изучена нами ранее [44]. Было обнаружено,
что у теневыносливого вида T. fluminensis кривые
быстрой индукции флуоресценции (традиционно
обозначаемые как O-J-I-P) в листьях растений,
акклимированных к сильному и слабому свету,
заметно различались; в то же время, в листьях
светолюбивого растения T. sillamontana заметного
различия кривых O-J-I-P для LL- и HL-листьев
не наблюдалось (данные не приведены, см. рабо-
ту [44]). 

Различия между LL- и HL-растениями четко
проявляются при измерениях медленной индук-
ции флуоресценции (кривая Каутского [47−49]) в
листьях, адаптированных к темноте. Видно, что
после быстрого достижения максимального уров-
ня Р (участок кривой О-Р) происходит сравни-
тельно медленное уменьшение интенсивности
флуоресценции (кривая P-S-T). После неболь-
шой начальной фазы спада (P-S) наблюдается
значительное уменьшение интенсивности флуо-
ресценции до стационарного уровня T (рис. 2а).
В листьях обоих видов традесканции, конечные
уровни флуоресценции у растений, акклимиро-
ваных к сильному и слабому свету, заметно раз-
личались. Спад флуоресценции был выше у рас-
тений, адаптированных к сильному свету (HL-
растения). Вероятно, это обусловлено тем, что у
HL-традесканций в большей степени проявляет-
ся индуцированное светом нефотохимическое ту-
шение, ослабляющее выход флуоресценции [44,
54–56]. Нельзя также исключить влияние морфо-
логических различий в листьях, акклимирован-
ных к свету различной интенсивности: у HL-рас-
тений увеличивается толщина листа, изменяются
размеры клеток и их локализация в листе [57].
Следствием морфологических изменений ли-
стьев растений могут быть оптические эффекты,
например, ослабление интенсивности света, про-
никающего вглубь листа, и усиление реабсорб-
ции испускаемого света. 

Мы также наблюдали различия в скоростях
спада интенсивности флуоресценции в листьях
растений, выращенных при разных интенсивно-
стях света. В листьях T. fluminensis, акклимиро-
ванных к слабому (LL) или сильному (HL) свету,
характерные времена спада флуоресценции,
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определяемые по уменьшению на 50% интенсив-
ности свечения от экстремума «Р» до начального
уровня «О», составляли Δt1/2(HL) ≈ 10 ± 2 и
Δt1/2(LL) ≈ 15 ± 2 с соответственно (рис. 2а)2. Это 
означает, что у растений, акклимированных к 
сильному свету, хлоропласты быстрее достигают 
нового стационарного состояния при освеще-
нии, чем у растений, выращенных на слабом свету. 

У светолюбивого вида T. sillamontana также на-
блюдалось различие в скоростях спада флуорес-
ценции у растений, акклимированных к слабому
или сильному свету (рис. 2б), но это различие бы-
ло не столь значительным, как в листьях теневы-
носливого вида T. fluminensis (рис. 2а). В листьях

2  Приведенные значения параметра Δt1/2 и указанные по-
грешности относятся к первому включению актиничного
света после предварительного освещения листа и его адап-
тации к темноте в течении 10 мин. Последующие циклы
измерений, выполненные после повторения процедуры
адаптации на том же образце, давали уменьшающиеся зна-
чения параметра Δt1/2. 

T. sillamontana характерные времена спада индук-
ционных кривых составляли Δt1/2(HL) ≈ 13 ± 2 и
Δt1/2(LL) ≈ 15 ± 2 с. 

Кинетика редокс-превращений Р700 (оптические
измерения). Описанные выше особенности мед-
ленной индукции флуоресценции в листьях LL- и
HL-растений проявляются в кинетике фотоинду-
цированных редокс-превращений P700. На
рис. 3а приведены кривые изменений концентра-
ции Р700

+  в адаптированных к темноте (10 мин)
листьях T. fluminensis, происходящие при дей-
ствии света различного спектрального состава.
О редокс-превращениях Р700 судили по разности
поглощения света при 870 нм (референтная длина
волны, принимаемая за точку отсчета) и 830 нм
(длина волны, при которой происходит уменьше-
ние поглощения света, связанное с окислением
Р700). Эту разность мы будем называть для крат-
кости сигналом «А870−830». Из рис. 3а видно, что в

Рис. 3. (а) –Типичные кинетики фотоиндуцированных изменений оптического сигнала А870–830 в листьях растений
T. fluminensis, выращенных при высокой (HL) или умеренной (низкой, LL) интенсивности света. Перед началом
измерений образцы для стандартизации освещали в течение 2 мин. актиничным светом (λмакс = 635 нм), поток
которого составлял 1000 мкмоль фотонов м−2с−1, а затем в течение 10 минут адаптировали к темноте. Кинетические
кривые нормированы по амплитуде на величину сигнала от Р700

+, индуцируемого дальним красным светом (λмакс =
= 720 нм), возбуждающим преимущественно ФС I. (б) – Быстрый рост сигнала А870–830 (фаза А0). (в) – Кинетика
спада сигнала от Р700

+ в темноте (после выключения красного света).
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ответ на включение красного света (λмакс =
= 635 нм), возбуждающего обе фотосистемы, на-
блюдаются многофазные изменения сигнала
А870−830, приписываемого окисленной форме ре-
акционного центра Р700. Сразу после включения 
красного света наблюдается быстрый рост сигна-
ла А870-830 (рис. 3б, фаза А0), который затем сме-
няется спадом сигнала А870−830 (восстановление
Р700

+ ) , обусловленным быстрым притоком элек-
тронов к Р700

+ .  Восстановление Р700
+  объясняет-

ся тем, что на начальной стадии освещения хло-
ропластов отток электронов от ФС I в ЦКБ лими-
тирован за счет низкой активности FNR и
ферментов ЦКБ; в то же время сохраняется при-
ток электронов в пластохиноновый пул от актив-
но функционирующей ФС II и за счет ЦЭТ во-
круг ФС I. Можно было бы предположить, что
спад Р700

+  на стадии А0 обусловлен не притоком
электронов к Р700

+ от PQH2, а рекомбинацией за-
рядов в ФС I. Мы полагаем, однако, что фаза А0
не связана непосредственно с рекомбинацией за-
рядов3.

В листьях T. fluminensis, акклимированных к
сильному свету, видны следующие стадии немо-
нотонных изменений сигнала А870−830 (фаза А1),
которая, однако, отсутствовала в листьях расте-
ний, акклимированных к слабому свету. Причина
такого различия пока остается невыясненной.
Можно предположить, что это обусловлено
неодинаковым содержанием электрон-транс-
портных комплексов и разным соотношением
альтернативных потоков электронов (НЭТ и
ЦЭТ) в хлоропластах HL- и LL-растений и/или
разными начальными концентрациями окислен-
ного Fd. Известно, например, что у HL-растений
увеличивается вклад ЦЭТ по отношению к НЭТ
[58, 59]. На начальных стадиях освещения адап-
тированных к темноте хлоропластов, когда функ-
ционирование ЦКБ лимитирует отток электро-
нов от ФС I, функционирование ЦЭТ может
обеспечивать отток электронов от ФС I, что будет
способствовать окислению Р700. При этом воз-
растает доля восстановленных молекул пластохи-
нонового пула (PQH2), что может увеличивать

 3 Можно было бы предположить, что спад Р700
+  на стадии А0 

обусловлен рекомбинацией зарядов в ФСI (см. обсужде-
ние этого вопроса в работе [4]). Однако, сравнивая кине-
тику спада сигнала А870–830 на стадии А0 (Δt1/2 ≈ 60–70 мс,
рис. 3б) с литературными данными о рекомбинации заря-
дов в ФСI в листьях Arabidopsis thaliana (предположительно
это реакция Fx−P700

+  → Fx P700, t1/2 ~ 60 мкс [4]), мы пола-
гаем, что этот процесс не связан непосредственно с быст-
рой рекомбинацией зарядов в реакционных центрах ФСI.

НЭТ за счет ускорения притока электронов от
PQH2 к Р700

+  [60].

Следует иметь в виду и другие возможные при-
чины появления/отсутствия фазы А1. Нельзя ис-
ключить того, что определенный вклад в измене-
ния оптического сигнала А870−830 могут вносить
изменения спектра поглощения листьев за счет
редокс-превращений других переносчиков (на-
пример, восстановление/окисление Fd и/или
пластоцианина [52]). Согласно работе [52], вос-
становление Fd может сопровождается неболь-
шими изменениями сигнала А870−830, но в на-
правлении, противоположном тому, которое со-
ответствует окислению Р700. По нашим
наблюдениям, такого рода искажения сигнала
А870−830 чаще всего встречаются в HL-листьях
T. sillamontana (данные не приведены, этому будет
посвящена наша специальная публикация). 

По мере дальнейшего освещения листьев
красным светом после короткой лаг-фазы проис-
ходит монотонный рост сигнала А870−830 к стаци-
онарному уровню (рис. 3, стадии А2 и А3). Увели-
чение сигнала на стадиях А2 и А3 может быть обу-
словлено рН-зависимой регуляцией
электронного транспорта: а) замедлением окис-
ления PQH2 цитохромным комплексом b6 f [26−
28] и ослаблением активности ФС II [24, 25]
вследствие закисления люмена (уменьшение
рНin), и б) ускорением оттока электронов от ФС I
в результате активации ЦКБ при увеличении
рНout [1]. Отметим, что, подобно кривым медлен-
ной индукции флуоресценции (рис. 2), в листьях,
акклимированных к сильному свету, наблюда-
лось более быстрое достижение стационарного
уровня сигнала А870–830, в отличие от растений,
акклимированных к слабому свету. Это означает,
что растения, произраставшие на сильном свету,
приобрели способность быстрее реагировать на
изменения интенсивности света. 

Естественно предположить, что описанные
выше различия в кинетике фотоокисления Р700
обусловлены разной стехиометрией электрон-
транспортных комплексов в хлоропластах HL- и
LL-растений. Акклимация традесканций к силь-
ному свету стимулирует экспрессию белка PsbS,
ответственного за усиление нефотохимического
тушения (НФТ) возбуждения Хл а в ФС II [29, 30].
Ранее нами было показано, что в листьях свето-
любивого вида T. sillamontana, отношение
PsbS/P700 почти в два раза выше (≈1.7–1.8), чем в 
листьях теневыносливого растения T. fluminensis, 
выращенного при тех же самых условиях [54]. 
При этом у HL-растений увеличивается содержа-
ние каротиноидов, ответственных за защиту ФСА 
от светового стресса [55].

+
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Акклимация растений к сильному свету может
стимулировать рост относительного содержания
ферментов ЦКБ [59–62]. Ключевым белком-пе-
реносчиком электрона, экспрессия которого чув-
ствительна к вариациям условий роста растений,
является ферредоксин (см. обзор [16]). От восста-
новленного Fd идет разветвление потоков элек-
тронов по разным цепям (НЭТ, ЦЭТ, цикл «вода-
вода» [60]). Как показал теоретический анализ
кинетики фотоиндуцированных редокс-превра-
щений Р700, амплитуда начальной фазы окисле-
ния Р700 возрастает при увеличении относитель-
ной концентрации Fd (см. описание модели в
работе [51]). Влияние неблагоприятных факторов
(например, действие активных форм кислорода),
вызывает уменьшение относительного содержа-
ния Fd, что приводит к ослаблению НЭТ и усиле-
нию оттока электронов от ФС I к О2. 

После выключения красного света
(λмакс = 635 нм), возбуждающего обе фотосисте-
мы, сигнал А870–830 быстро спадает (рис. 3в) за
счет притока электронов к Р700

+ от восстановлен-
ных доноров, находящихся в ЦЭТ между ФС II и
ФС I (PQH2 → b6 f → пластоцианин →Р700

+ ).  Ана-
лиз кинетики спада сигнала от Р700

+ в темноте
(рис. 3в) показал, что этот процесс подчиняется
экспоненциальной зависимости. Основным ис-
точником электронов для восстановленияР700

+ в
темноте служит пул восстановленных молекул
пластохинола (PQH2). Скорость окисления
PQH2, как известно [15, 26−28], контролируется

внутритилакоидным pHin. С понижением pHin
окисление PQH2 замедляется, что приводит к
уменьшению скорости восстановления Р700

+ ,  о
чем можно судить по увеличению времени вос-
становления Р700

+ в темноте (параметр τ1/2), на-
блюдаемому с ростом длительности экспозиции
листьев на красном свету (рис. 4). Включение
дальнего красного света (λмакс = 720 нм), воз-
буждающего преимущественно ФС I, вызывает
быстрое ре-окисление Р700 (рис. 3а).

На рис. 4 показаны зависимости параметра
τ1/2 от времени освещения красным светом ли-
стьев, адаптированных к темноте. После кратко-
временной экспозиции листьев T. fluminensis,
время восстановления 50 % центров Р700 состав-
ляло τ1/2 ≈ 5 мс; в листьях T. sillamontana этот па-
раметр был равен τ1/2 ≈ 12−13 мс. По мере увели-
чения длительности экспозиции скорость восста-
новления Р700

+ в темноте уменьшается (параметр
τ1/2 возрастает). После достаточно длительного
освещения листьев (~2−3 минуты) характерные
времена восстановления Р700

+ в темноте достига-
ли τ1/2 ~ 30−35 мс (рис. 4). Рост параметра τ1/2 от-
ражает замедление окисления PQH2 цитохром-
ным комплексом, что может происходить по сле-
дующим причинам: а) закисление люмена в
результате понижения рНin, вызывающее замед-
ление окисления PQH2; б) активация ЦКБ в
результате роста pHout; в) перераспределение

Рис. 4. (а) – Зависимости параметра τ1/2 от длительности действия красного света (λмакс = 635 нм) в листьях,
адаптированных к темноте в течение 10 мин. Перед началом измерений образцы для стандартизации освещали в
течение 2 мин красным светом (λмакс = 635 нм), поток которого составлял 1000 мкмоль фотонов м−2с−1,
затем в течение 10 мин адаптировали к темноте. Величины стандартного отклонения определены по результатам 4−
5 измерений. (б) – После достаточно продолжительного действия красного света (≥ 3 минут) параметры τ1/2,
измеряемые у LL- и HL-растений, совпадают.

+
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потоков электронов на акцепторном участке це-
пи (ослабление ЦЭТ в пользу НЭТ). В результате
уменьшения притока электронов от ФС II к PQ
(из-за светоиндуцированного усиления НФТ па-
дает активность ФС II) и ускорения оттока элек-
тронов от PQH2 к ФС I со временем также падает
относительная концентрация PQH2. Экспери-
ментальные доказательства того, что процент
восстановленных молекул пластохинонового пу-
ла (концентрация [PQH2]) изменяется немоно-
тонно в ходе освещения листьев красным (или бе-
лым) светом, были представлены нами ранее [51].
В итоге, в результате фотоиндуцированного за-
кисления люмена (рНin↓) и уменьшения концен-
трации [PQH2] поток электронов к Р700

+ умень-
шается, что проявляется как рост параметра τ1/2
по мере освещения листьев (рис. 4). 

Подчеркнем, что в листьях растения T. flumin-
ensis, акклимированного к слабому свету (LL-тра-
десканция), увеличение параметра τ1/2 с ростом
длительности действия красного света происхо-
дилo быстрее, чем у растений, произраставших на
сильном свету (HL-растения). Мы полагаем, что
это служит проявлением того, что у HL-траде-
сканций возрастает вклад ЦЭТ вокруг ФС I, спо-

собствующий ускорению притока электронов к
Р700

+ [51, 54, 57]. Отток электронов от ФС I в ЦКБ
ускоряется по мере освещения хлоропластов в ре-
зультате активации FNR и ферментов ЦКБ [1].
После достаточно продолжительного действия
красного света (≥3 мин), когда ЦКБ функциони-
рует активно, параметры τ1/2, измеряемые у LL- и
HL-растений, совпадают (рис. 4б).

Кинетика фотоиндуцированного окисления Р700
(по данным ЭПР измерений). Описанная выше за-
кономерность – более быстрое окисление Р700 в
листьях T. fluminensis у HL-растений – наблюда-
лась также при измерениях кинетики фотоинду-
цированного окисления Р700 методом ЭПР. Важ-
ным преимуществом техники ЭПР-спектроско-
пии является то, что сигнал ЭПР от Р700

+

свободен от примеси сигналов от ферредоксина и
пластоцианина, у которых спектры ЭПР не на-
блюдаются при комнатных температурах [50]. Из
рис. 5 видно, что в ответ на включение белого све-
та, эффективно возбуждающего обе фотосисте-
мы, кинетика окисления Р700 характеризуется
двумя фазами: после сравнительно быстрого не-
большого увеличения сигнала (стадия А1) его рост
замедляется и в дальнейшем концентрация

Рис. 5. (а) – В центре показан сигнал ЭПР в освещаемом белым светом листе T. fluminensis (НL-образец), величинa
которого пропорциональна концентрации Р700

+; два референтных сигнала, помеченные как Мn2+, принадлежат 3-й
и 4-й компонентам сверхтонкой структуры иона Мn2+ в решетке MgO образца, используемого в качестве стандарта.
(б) – Кинетика роста низкополевой компоненты сигнала ЭПР, принадлежащего центрам Р700

+, в листьях растений
T. fluminensis, выращенных при слабом (LL) или сильном (HL) освещении. Перед началом измерений образцы для
стандартизации освещали в течение 2 мин красным светом (λмакс = 635 нм), поток которого составлял
1000 мкмоль фотонов м−2с−1, а затем в течение 10 минут образец адаптировали к темноте. Показанные на рис. 5б
кинетические кривые нормированы на максимальные величины сигналов. 
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Р700
+ сравнительно медленно достигает стацио-

нарного уровня (стадия А2). Методом ЭПР мы не
наблюдали самую первую (быструю) фазу окис-
ления Р700 (А0), детектируемую по оптическому
сигналу А870−830. Техника ЭПР-спектроскопии не
позволяет разрешать быстрые изменения Р700,
детектируемые оптическими методами. Важно,
однако, подчеркнуть, что кинетические данные
для LL- и HL-растений, полученные методом
ЭПР, отражают ту же закономерность, которую
мы наблюдали для оптического сигнала А870−830:
скорость окисления Р700 в хлоропластах HL-рас-
тений в полтора-два раза выше, чем у LL-расте-
ний. Это наглядно видно из рис. 5, на котором
показаны кинетические кривые для листьев
T. fluminensis. Аналогичная закономерность на-
блюдалась для LL- и HL-растений T. sillamontana
(данные не приведены, см. подробнее работу
[44]). Таким образом, оба метода регистрации
Р700

+ − оптическая и ЭПР-спектроскопия − при-
водят к одному и тому же выводу: у HL-растений,
адаптированных к темноте, наблюдается более
быстрое светоиндуцированное окисление Р700,
чем у LL-растений.

ЗАКЛЮЧЕНИЕ
Проведенное нами исследование электрон-

транспортных процессов в листьях двух «кон-
трастных» видов традесканции (теневыносливый
и светолюбивый виды) показало, что интенсив-
ность освещения при выращивании растений за-
метно влияет на процессы фотосинтетического
транспорта электронов. Изучая индукционные
явления в адаптированных к темноте листьях ме-
тодами оптической и ЭПР-спектроскопии, мы
показали, что оба вида растений, акклимирован-
ных к высокой интенсивности света, характери-
зуются более быстрыми процессами окисления
Р700 и спада флуоресценции Хл а по сравнению с
растениями, выращенными при низкой (умерен-
ной) интенсивности света. Вся совокупность по-
лученных нами данных свидетельствует, что та-
кие процессы, как нефотохимическое тушение
возбуждения Хл а и фотоиндуцированное ослаб-
ление активности ФС II, активация реакций цик-
ла Кальвина−Бенсона и ускорение оттока элек-
тронов от ФС I в ЦКБ, в листьях HL-растений
T. fluminensis протекают быстрее (приблизительно
в полтора-два раза) по сравнению с листьями LL-
растений. Полученные результаты объясняются в
контексте «краткосрочных» механизмов регуля-
ции электронного транспорта в хлоропластах: у
теневыносливых растений T. fluminensis, аккли-
мированных к сильному свету, ФСА быстрее реа-
гирует на включение интенсивного света. У HL-
растений быстрее активируются защитные меха-

низмы, позволяющие предотвращать поврежде-
ния ФСА при избыточном освещении, которые
могут возникать в природных условиях в резуль-
тате флуктуаций интенсивности солнечного
освещения. Влияние интенсивности света при
выращивании растений заметнее проявляется в
динамике индукционных процессов у теневынос-
ливого вида традесканций (T. fluminensis), чем у
светолюбивого вида (T. sillamontana). Мы показа-
ли, что у растений вида T. sillamontana, которые
приобрели в ходе эволюции способность расти и
функционировать на сильном свету, «реактив-
ность» ФСА (скорость достижения стационарно-
го состояния при освещении сильным светом ли-
стьев, адаптированных к темноте) менее чувстви-
тельна к условиям акклимации растений по
сравнению с тенелюбивым видом T. fluminensis. 
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 Regulation of Electron Transport in Chloroplasts: 
Induction Processes in Tradescantia Leaves

 I.S. Suslichenko*, B.V. Trubitsin*, and A.N. Tikhonov*

* Department of Physics, Lomonosov Moscow State University, Leninskie Gory 1/2, Moscow, 119991 Russia

The results of a comparative study of electron transport in chloroplasts in situ in leaves of shade-tolerant and
light-loving species of tradescantia (T. fluminensis and T. sillamontana) grown under conditions of strong
(800–1000 μmol photons  m–2s–1) or weak (moderate) illumination (50–125 μmol photons m–2s–1) are de-
scribed. Electron transport processes were monitored by electron paramagnetic resonance and optical spec-
troscopy. Photoinduced redox transformations of the primary electron donor of photosystem I (P700) and
slow induction of chlorophyll a f luorescence were studied. It was shown that plants acclimated to high light
intensity are characterized by more rapid processes of P700 oxidation and attenuation of chlorophyll a f luo-
rescence compared to plants grown at low light intensity. The data obtained are analyzed in the context of
“short-term” mechanisms of pH-dependent regulation of electron transport in intact chloroplasts (non-pho-
tochemical quenching of excitation in photosystem II, retardation of plastoquinol oxidation by cytochrome
b6 f-complex, and activation of Calvin–Benson cycle reactions).

Keywords: chloroplasts, photosynthetic electron transport, Tradescantia leaves, electron paramagnetic resonance,
optical spectroscopy, acclimation to strong and moderate light
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