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ЭНДОЛИЗИНОВ T5 И PlyG in silico
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Эндолизины бактериофагов – часть комплекса литических ферментов, отвечающая за разрушение
пептидогликана клеточной стенки бактерий. В данной работе методами молекулярной динамики и
анализа нормальных мод были изучены динамические особенности однодоменного эндолизина
бактериофага Т5 и многодоменного эндолизина PlyG гамма-фага. Был объяснен механизм актива-
ции эндолизина бактериофага Т5 кальцием и было обнаружено принципиальное различие в дина-
мических особенностях однодоменных и многодоменных эндолизинов. 
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Эндолизины, литические ферменты бактерио-
фагов, являются специализированными фермен-
тами, которые разрушают пептидогликан клеточ-
ных стенок бактерий на стадии выхода потомства
фага из клетки-хозяина. 

Высокая специфичность и эффективность эндо-
лизинов бактериофагов позволяют рассматривать
эндолизины в качестве потенциальных антибакте-
риальных агентов в сельском хозяйстве, биотехно-
логии, пищевой промышленности и прочих отрас-
лях. Эти ферменты обладают рядом преимуществ по
сравнению с обычными антимикробными средства-
ми, включая целенаправленное действие против
определенных патогенов и снижение риска разви-
тия резистентности [1–3]. 

Классификация эндолизинов основана на ти-
пе связей, разрушаемых ими в бактериальном
пептидогликане. Существует три класса эндоли-
зинов: амидазы, катализирующие разрушение
связи между N-ацетилмурамовой кислотой и

связанным с ней L-аланином; гликозидазы, раз-
рушающие β-1,4-гликозидные связи между N-аце-
тилглюкозамином и N-ацетилмурамовой кисло-
той; и пептидазы, или эндопептидазы, действую-
щие на связи между определенными ами-
нокислотами, входящими в состав межпептид-
ных мостиков или их пептидных субъединиц [4].
На рис. 1 приведена схема структуры пептидогли-
кана Escherichia coli и обозначены связи, разруша-
емые эндолизинами различных классов. 

Эндолизины могут состоять из одного и более
доменов, причем в состав эндолизина обязатель-
но входит хотя бы один каталитически активный
домен (enzymatically active domain, EAD), расщеп-
ляющий определенные связи в составе пептидо-
гликана. Помимо одного или нескольких EAD,
эндолизин может иметь один или несколько суб-
страт-связывающих доменов (cell wall binding do-
main, CBD), отвечающих за связывание фермента
с пептидогликаном [5]. Домены связаны между
собой подвижными участками белковой цепи –
линкерами. Было установлено, что даже в отсут-
ствие соответствующих CBD, некоторые EAD
многодоменных эндолизинов могут связывать
пептидогликан, и важным условием этого являет-
ся наличие положительного заряда на EAD [6].
В некоторых случаях, эндолизин может иметь

Сокращения: EAD – каталитически активный домен (enzy-
matically active domain), CBD – субстрат-связывающий до-
мен (cell wall binding domain), МД – молекулярная динами-
ка, АНМ – анализ нормальных мод, RMSF – усредненное
по времени среднеквадратичное отклонение координат
атомов (root mean square f luctuation). 
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Рис. 1. Классификация эндолизинов по характеру разрушаемых связей. Используемые обозначения: NAG −
N-ацетилглюкозамин, NAM − N-ацетилмурамовая кислота, L-Ala – L-аланин, D-Glu – D-глутамин, m-Dpm – мезо-
диаминопимелиновая кислота (ДАПК), D-Ala – D-аланин.

несколько EAD, принадлежащих к различным
классам [7], что более характерно для бактерио-
фагов с грамположительными клетками-хозяева-
ми [8]. Тем не менее, существует предположение,
что один из EAD в таком случае выполняет до-
полнительную функцию связывания пептидо-
гликана [9].

Эндолизины, разрушающие пептидогликан
грамположительных бактерий, являются много-
доменными эндолизинами с EAD на N-конце и
CBD на C-конце [10], в то время как эндолизины
с грамотрицательными клетками-хозяевами чаще
являются однодоменными ферментами, имею-
щими только единственный глобулярный EAD.
Были обнаружены и многодоменные эндолизи-
ны, действующие на пептидогликан грамотрица-
тельных бактерий, имеющие также один или не-
сколько CBD, но в данном случае домены были
соединены в противоположном порядке: CBD на
N-конце и EAD на C-конце [11].

Более часто встречающаяся у грамположи-
тельных бактерий многодоменность эндолизинов
объясняется отсутствием у грамположительных
бактерий внешней мембраны. Более надежное
связывание эндолизина с пептидогликаном и
протеолиз эндолизинов с несколькими EAD про-
теазами клетки-хозяина приводит к затруднению
лизиса клетки извне, предотвращая гибель коло-
ний клеток в тех случаях, когда это не требуется
для выхода потомства фага из клетки, что позво-

ляет бактериофагу эффективнее использовать ре-
сурсы клеток-хозяев [12, 13]. 

Другими характеристиками, по которым раз-
личаются эндолизины бактериофагов грамотри-
цательных и грамположительных организмов,
являются общий заряд фермента и его гидро-
фобность – оба параметра выше у грамотрица-
тельных эндолизинов, что также затрудняет ли-
зис грамположительных бактерий извне [14].

Несмотря на существование как однодомен-
ных, так и многодоменных эндолизинов с изу-
ченной структурой и функциями, динамические
особенности этих ферментов остаются малоизу-
ченными в связи со сложностью проведения экс-
периментов и интерпретации их результатов. 

Изучение динамики свернутых белков позво-
ляeт связать структуру белков с их специфиче-
ской функцией и коллективным поведением эле-
ментов структуры. Белки обычно характеризуют-
ся низкосимметричным локальным атомным
окружением и плотной упаковкой, поэтому их
динамика, как правило, анизотропна и коллек-
тивна. Теоретические исследования флуктуаций
и коллективного движения элементов структур
белков основаны либо на моделировании с при-
менением молекулярной динамики (МД), либо
на методе нормальных мод, также называемом
анализом нормальных мод (АНМ) [15].

Структура молекулы белка, ее динамика и
перенос энергии тесно связаны друг с другом.
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Для белков характерен высокоанизотропный и
селективный перенос энергии, который обеспе-
чивает передачу сигналов между удаленными ча-
стями молекулы. Вычислительные исследования
переноса возбуждений между частями белков по-
казывают, что колебательная энергия распро-
страняется субдиффузионно, аналогично пере-
носу энергии на фрактальном объекте, таком как
перколяционный кластер, для которого только
относительно небольшое количество связанных
путей пересекает объект и обеспечивает каналы
для анизотропного потока. Соответствие белков
объектам с фрактальной геометрией, а именно,
трехмерным перколяционным кластерам, также
подтверждается низкотемпературными исследо-
ваниями. Это позволяет эффективно использо-
вать АНМ для установления динамических осо-
бенностей белков [16]. 

Анализ нормальных мод изучает движениe
объектов в потенциальной яме, с амплитудой, не-
достаточной для покидания потенциальной ямы.
Вокруг стабильной конформации системы, кото-
рая представляет минимум поверхности потен-
циальной энергии, строится гармоническое при-
ближение потенциальной ямы. Колебания по на-
правлениям нормальных мод имеют четко
определенную частоту, которая связана с кривиз-
ной потенциала вдоль направления движения.
Таким образом, АНМ позволяет явно оценить все
возможные частоты колебаний в системе, в том
случае, если трением можно пренебречь.

В случае белка с N атомами существует 3N де-
картовых координат и, следовательно, также 3N
направлений нормальных мод. 3N-мерный век-
тор в конфигурационном пространстве может
представлять либо точку (конформацию белка)
или направление (изменение конформации). Та-
ким образом, вектор нормального мода описыва-
ет, в каком направлении движется каждый атом и
насколько далеко он перемещается относительно
других атомов. Математически векторы нормаль-
ных мод являются собственными векторами мат-
рицы, описывающей форму потенциальной ямы.
Соответствующие собственные значения описы-
вают кривизну потенциала вдоль направлений
нормальных мод [17].

При исследовании как непосредственно кон-
формаций белков, так и изменений конформа-
ций с использованием анализа нормальных мод
наиболее информативной является ковариаци-
онная матрица, расчет которой требует использо-
вания всех мод [18]. В связи с этим все ковариаци-
онные матрицы, представленные в данном иссле-
довании, включают полный набор полученных
нормальных мод. 

Целью данной работы является изучение
динамических процессов, характерных для
элементов структур однодоменного эндолизина

EndoT5 (клетка-хозяин соответствующего бакте-
риофага – грамотрицательная бактерия Escheri-
chia coli) и многодоменного эндолизина
PlyG (клетка-хозяин соответствующего бакте-
риофага – грамположительная бактерия Bacillus
anthracis) для установления различий в подвиж-
ности элементов структуры эндолизинов, харак-
терных для бактериофагов с грамотрицательны-
ми и грамположительными клетками-хозяевами.
В частности, изучение динамических особенно-
стей эндолизинов позволяет делать выводы о
механизмах протекания различных процессов с
участием этих ферментов: фолдинга, катализа,
связывания с субстратом и поддержания катали-
тически активной конформации белка. 

МАТЕРИАЛЫ И МЕТОДЫ
Выбор структур. Для данного исследования

были выбраны структуры эндолизинов бактерио-
фагов, полученные методами ЯМР-спектроско-
пии и депонированные в базу данных Protein Data
Bank с идентификаторами 2MXZ, 8P3A, 2L47 и
2L48. Эти структуры представляют собой
Zn2+-форму однодоменного эндолизина бакте-
риофага Т5 (EndoT5−Zn2+), Zn2+/Ca2+-форму
однодоменного эндолизина бактериофага Т5
(EndoT5−Zn2+/Ca2+) [19], EAD многодоменного
эндолизина гамма-фага (PlyG−EAD) и CBD мно-
годоменного эндолизина гамма-фага (PlyG−
CBD) [20] соответственно. 

Молекулярная динамика. Для каждой депони-
рованной структуры в целях проведения дальней-
шего исследования выбиралась первая модель,
имеющая наименьшее значение целевой функ-
ции. Файлы топологии и файлы координат были
получены из PDB-файлов, соответствующих
структурам эндолизинов, с помощью программы
tleap пакета программ AmberTools23 [21]. Молеку-
лы растворялись в кубической ячейке, содержа-
щей воду модели TIP3P, с линейным размером
10 Å и силовым полем ff14SB. Для нейтрализации
полученных структур добавлялось требуемое ко-
личество ионов Cl–. 

Для каждой полученной структуры проводили
эксперимент in silico, состоящий в изучении ди-
намических процессов методом МД, с помощью
программы sander пакета программ Amber-
Tools23. Минимизация в течение 1000 шагов, при
которой учитывалась только подвижность моле-
кул воды, предшествовала минимизации в тече-
ние 1000 шагов, при которой учитывалась по-
движность всей структуры. Далее система дости-
гала равновесного состояния при постоянном
объеме и 298.15 K в течение 5000 шагов с длитель-
ностью одного шага, составляющей 2 фс.
Наконец, система достигала равновесного состо-
яния при постоянном (атмосферном) давлении
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и 298.15 К в течение более 300 пс с длительностью
одного шага, составляющей 1 фс. 

Траектории движения атомов, полученные в
результате процедур, описанных выше, были ис-
пользованы для вычисления RMSF (усредненно-
го по времени среднеквадратичного отклонения
координат атомов), усредненного для атомов
главной цепи (CO, CA и NH), с помощью про-
граммы cpptraj пакета программ AmberTools23.

Анализ нормальных мод. Анализ нормальных
мод, проведенный для структур, включающих
полный набор атомов, был выполнен с помощью
пакета Bio3d [22] языка R. При этом обрабатыва-
лись PDB-файлы, содержащие полный перечень
депонированных моделей (в количестве 20 шт.
для каждой структуры). Таким образом, для каж-
дой структуры были вычислены RMSF и динами-
ческие матрицы кросс-корреляции. 

Также для каждой депонированной структуры
выбиралась первая модель, имеющая наимень-
шее значение целевой функции. Методом анали-

за нормальных мод для таких моделей на основе
динамических матриц кросс-корреляции были
получены кросс-корреляции смещений атомов.  

Визуализация. Графики RMSF, полученные в
результате МД, были визуализированы с помо-
щью пакета matplotlib языка Python. Для визуали-
зации структур использовалась система визуали-
зации молекул PyMOL.

РЕЗУЛЬТАТЫ

RMSF, рассчитанные по траекториям движе-
ния атомов, полученным в результате выполне-
ния МД, приведены на рис. 2 и 3. 

RMSF, рассчитанные с применением АНМ,
приведены на рис. 4 и 5. 

Можно установить, что для EndoT5 наиболь-
шая подвижность наблюдается в областях
расположения петель, образованных остатками
40–70 и 111–132, а для PlyG подвижность выра-
жена только в области расположения линкера,

Рис. 2. RMSF согласно результатам проведения МД для остатков EndoT5−Zn 2+ (2mxz) и EndoT5−Zn2+/Ca2+ (8p3a).

Рис. 3. RMSF согласно результатам проведения МД для остатков PlyG−EAD (EAD) и PlyG−CBD (CBD).
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связывающего два домена. Наличие второго пика
на рис. 3 и 5, соответствующего подвижности
PlyG−CBD в области аминокислотного остатка
250, объясняется тем, что депонированная струк-
тура PlyG−CBD представляет собой димер суб-
страт-связывающего домена. 

Динамические матрицы кросс-корреляции
приведены на рис. 6 и 7. Кросс-корреляции сме-
щений атомов, полученные на основе динамиче-
ских матриц кросс-корреляции, приведены на
рис. 8 и 9. 

Распределение коэффициентов корреляции
для четырех исследованных структур, полученное
на основе анализа значений, входящих в соответ-
ствующие динамические матрицы кросс-корре-
ляции, изображено в виде скрипичной диаграм-
мы на рис. 10. 

Пользуясь диаграммой, представленной на
рис. 10, можно установить, что коррелированное

движение не связанных участков полипептидной
цепи PlyG−EAD менее выражено, а его распреде-
ление коэффициентов кросс-корреляции харак-
теризуется меньшей шириной, чем у трех других
исследованных белковых структур.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Существующее исследование [23], включаю-
щее экспериментальное изучение подвижности
участков цепи EndoT5 методами ЯМР-спектро-
скопии, подчеркивает симбатный характер упо-
рядочения конформационных состояний петель
40–70 и 111–132. Согласно работе [23], кальцие-
вая активация EndoT5 включает формирование и
стабилизацию каталитически активной «откры-
той» конформации активного центра, которая,
как считается, характеризуется экспозицией гид-
рофобных аминокислот, участвующих во взаимо-
действии с субстратом.

Рис. 4. RMSF согласно результатам проведения АНМ для остатков EndoT5−Zn2+ (Zn-form) и EndoT5−Zn2+/Ca2+

(Zn/Ca-form).

Рис. 5. RMSF согласно результатам проведения АНМ для остатков PlyG−EAD (EAD) и PlyG−CBD (CBD).
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Рис. 6. Динамическая матрица кросс-корреляции для EndoT5−Zn2+ (а) и EndoT5−Zn2+/Ca2+ (б).

Результаты анализа подвижности участков це-
пи EndoT5, полученные в данном исследовании
методами МД и АНМ, согласуются как между со-
бой, так и с экспериментальными данными. Ана-
логично, можно установить, что в результате ак-
тивации кальцием преобладает каталитически
активная «открытая» конформация EndoT5. Тем
не менее, благодаря полученным данным о
кросс-корреляции смещений атомов, можно
привести более детальное объяснение, основан-
ное на изучении структуры белка. На рис. 8 пока-
зано, что цинковая форма EndoT5 способна к
«ножницеобразному» движению петель 40–70 и
111–132, при этом концы петель движутся как от-

дельные жесткие тела. Амплитуда этого движе-
ния, согласно рис. 4, в наносекундном и субнано-
секундном диапазоне превышает амплитуду дви-
жения, доступную для петель 40–70 и 111–
132 цинк-кальциевой формы EndoT5, которая,
между тем, способна к движению петли 40–70
«вверх–вниз» при малоподвижности петли 111–
132, что обеспечивает вышеупомянутое преобла-
дание каталитически активной «открытой» кон-
формации EndoT5. Фиксация петли 111–132 и из-
менение характера движения петли 40–70 приво-
дит к тому, что активный центр белка более
«доступен» для взаимодействия с пептидоглика-
ном. 

Рис. 7. Динамическая матрица кросс-корреляции для PlyG−EAD (а) и PlyG−CBD (б).
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Рис. 8. Кросс-корреляции смещений атомов для EndoT5−Zn2+ (а) и EndoT5−Zn2+/Ca2+ (б). Ионы Zn2+ обозначены
зелеными сферами, ионы Ca2+ обозначены оранжевыми сферами. Красные линии соединяют атомы основной цепи
с положительным коэффициентом корреляции, составляющим [0.8; 1.0], а синие линии соединяют атомы основной
цепи с отрицательным коэффициентом корреляции, составляющим [–0.6; –0.4]. Черные стрелки указывают
направление движения, в результате которого петли, образованные аминокислотными остатками 40–70 и 111–132,
сближаются; зеленые стрелки указывают направление движения, в результате которого они отдаляются друг от друга.

Рис. 9. Кросс-корреляции смещений атомов для PlyG−EAD (а) и PlyG−CBD (б). Ионы Zn2+ обозначены зелеными
сферами. Красные линии соединяют атомы основной цепи с положительным коэффициентом корреляции,
составляющим [0.8; 1.0], а синие линии соединяют атомы основной цепи с отрицательным коэффициентом
корреляции, составляющим [–0.4; –0.2]. 

Движение петли 40–70 «вверх–вниз» также
происходит быстрее, чем «ножницеобразное»
движение петель 40–70 и 111–132, что подтвер-
ждается результатами МД (рис. 2): в субпикосе-
кундном диапазоне цинк-кальциевая форма En-
doT5 имеет более гибкую петлю 40–70 с петлей
111–132, сравнимой по гибкости с цинковой фор-
мой EndoT5. Это также объясняет увеличение ве-
роятности катализа, так как приобретение моле-
кулой активной конформации ускоряется. 

Наконец, коррелированное движение не свя-
занных участков цепи однодоменного EndoT5 бо-
лее выражено, чем коррелированное движение не
связанных регионов каталитического домена
PlyG−EAD многодоменного PlyG. Это можно
объяснить тем, что PlyG−EAD и PlyG−CBD за-
фиксированы в активной конформации, в то вре-
мя как общая гибкость структуры белка, позволя-
ющая реализовать механизмы связывания с
субстратом (с помощью PlyG−CBD) и катализа
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(с помощью PlyG−EAD) обеспечивается, в ос-
новном, наличием гибкого линкера, соединяю-
щего EAD и CBD. 

Можно предположить, что фундаментальным
различием между однодоменными эндолизинами
и EAD многодоменных эндолизинов является
выраженность коррелированного движения
несвязанных участков полипептидной цепи. 

ВЫВОДЫ

Обнаружено, что активация EndoT5 ионом
кальция приводит к преобладанию каталитиче-
ски активной «открытой» конформации в резуль-
тате изменения «ножницеобразного» характера
взаимного движения петель 40–70 и 111–132 на
движение петли 40–70 «вверх–вниз» над зафик-
сированной петлей 111–132. Участки аминокис-
лотной цепи, характеризующиеся наибольшей
подвижностью, обнаруженные в результате про-
веденных экспериментов in silico, совпали с участ-
ками аминокислотной цепи, характеризующими-
ся наибольшей подвижностью, обнаруженными с
использованием методов ЯМР-спектроскопии. 

Также установлено, что многодоменный эндо-
лизин PlyG представляет собой два домена,
зафиксированных в активной конформации,
причем подвижность данной структуры обеспе-
чивается в основном подвижной петлей, соеди-
няющей два домена, а каталитически активный
домен PlyG−EAD характеризуется менее выра-
женной корреляцией движений несвязанных
участков аминокислотной цепи, чем однодомен-
ный EndoT5. Обнаруженные различия могут яв-
ляться фундаментальными для однодоменных и
многодоменных эндолизинов. 
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 Endolysins T5 and PlyG Dynamics: Comparative Analysis in silico
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Bacteriophage endolysins are part of a lytic enzymes complex responsible for the destruction of the bacterial
cell wall peptidoglycan. In this paper, the dynamic properties of bacteriophage T5 single-domain endolysin
and the multi-domain endolysin PlyG of gamma phage are studied using molecular dynamics and normal
mode analysis. The mechanism of activation of bacteriophage T5 endolysin by calcium and the discovery of
a fundamental difference in the dynamic features of single-domain and multi-domain endolysins are ex-
plained.

Keywords: endolysin, molecular dynamics, normal mode analysis, calcium activation, dynamic properties of pro-
teins
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