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При искусственном инкубировании срезов сенсомоторной коры морских свинок и конечного моз-
га черепах микроионофоретическое подведение ацетилхолина к нейронам выявило достоверно
меньшую частоту ответной импульсации у нервных клеток черепах по сравнению с клетками мор-
ских свинок. Это различие связано с разной скоростью М-холинергической реакции в температур-
ных диапазонах 27–29°С и 34–36°С, что было обнаружено ранее в гипотермических экспериментах.
Несмотря на то что эксперименты на нейронах морских свинок и черепах были проведены в одном
и том же температурном диапазоне (32–34°С), генетически обусловленное строение нейрональных
мембран отражает естественную температурную зависимость обоих видов: у мембран морских сви-
нок с постоянной температурой обитания 38°С плотность К+-каналов выше, чем у черепах с пред-
почитаемой температурой 28–32°С. Различие в представленности К+-каналов было определено по
достоверно более длительному активационному последействию у нейронов черепах в ответах на вы-
зываемую глутаматом импульсную активацию. Низкая плотность К+-каналов на мембранах и низ-
кая скорость М-холинергической реакции, которая их закрывает при наступлении любого приспо-
собительного акта, не позволяют нейронам формировать высокочастотные и продолжительные им-
пульсные последовательности для регулирования поведения в широком диапазоне у черепах с
предпочитаемой температурой 28–32°С.

Ключевые слова: черепахи, морские свинки, ацетилхолин, глутамат, импульсная активность нейронов,
температура, скорость реакции.
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В середине прошлого века после внедрения
метода микроионофоретической аппликации ме-
диаторов к отдельным нейронам стало возмож-
ным определить ионные и структурные механиз-
мы возбуждения в нервной системе. На рис. 1
представлены два типа импульсного реагирова-
ния у нейронов сенсомоторной коры морской
свинки в ответ на 2 разных активационных меди-
атора – глутамат и ацетилхолин. Формирование

спайкового процесса происходит в обоих случаях,
но имеет разное происхождение, разное времен-
ное течение и разные ионные механизмы. В ответ
на глутамат при его непосредственном воздей-
ствии на глутаматный рецептор [1] возникает
импульсная активность, имеющая короткое на-
чало и быстрое завершение после прекращения
действия медиатора (рис. 1а). Это воздействие фор-
мирует токи по модели Ходжкина–Хаксли [2], иду-
щие по градиенту концентраций: ионы Na+ устрем-
ляются из внешней среды по открывающимся

Сокращение: ВПСП – возбуждающий постсинаптический
потенциал. 
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Рис. 1. Два типа импульсного возбуждения нейрона коры мозга. Эксперименты проведены на срезах сенсомоторной
коры морской свинки. Микроионофоретическое подведение медиаторов осуществляли на нейроне V слоя.
Регистрацию импульсной активности и подведение глутамата и ацетилхолина проводили с помощью 3-канальных
стеклянных микроэлектродов. Глутамат апплицировали к нейрону из 1 М раствора глутамата натрия; ацетилхолин –
из 2 М раствора ацетилхолин хлорида. Оба медиатора подводили к одному и тому же нейрону. Время действия
медиаторов отмечено чертой под записью активности нейрона. (а) – Активационная реакция на действие глутамата
(ток электрофореза 70 нА, отрицательный полюс внутри электрода). (б) – Активационная реакция на действие
ацетилхолина (ток электрофореза 80 нА, положительный полюс внутри электрода).

Na+-каналам, а возникающая деполяризация ак-
тивирует К+-каналы, по которым происходит вы-
брос калия из нервной клетки. Такой же тип ак-
тивации характерен для стимуляции нейронов
электрическим током [3, 4] и для действия других
дикарбоновых аминокислот. То же самое проис-
ходит при взаимодействии ацетилхолина с Н-хо-
линорецепторами нейронов ганглиев вегетатив-
ной нервной системы [5], а также при активации
фотонами чувствительных к свету рецепторов,
внедренных в мембраны нейронов по оптогене-
тической технологии [6]. Поскольку деполяриза-
ция происходит при последовательном раскры-
тии ионных Na+- и K+-каналов, возникающая
импульсация сопровождается падением мем-
бранного сопротивления.

Отличительной чертой активации, изображен-
ной на рис. 1а, является ее высокая устойчивость.
Пока мембранный потенциал остается неизмен-
ным, импульсное возбуждение во всех перечис-
ленных случаях реализуется при широком наборе
температурных значений и не требует энергети-
ческих затрат [7–9].

Иначе выглядит возбуждение при тестирова-
нии нейронов другим возбуждающим медиато-
ром – ацетилхолином (рис. 1б). Вызываемый
ацетилхолином импульсный ответ при его воз-
действии на М-холинергический рецептор харак-
теризуется длительным началом и протяженным
течением, превышающим время действия медиа-
тора на секунды и десятки секунд.

Исходя из общих соображений [3, 5] и исполь-
зуя внутриклеточную регистрацию нейронов [10,
11], удалось уверенно отличить ионный механизм
М-холинергического возбуждения от глутаматер-
гического – действие ацетилхолина сопровожда-

ется снижением стационарного и потенциал-за-
висимого К+-токов и ростом мембранного со-
противления. Этот механизм навел иссле-
дователей на мысль об усиливающем влиянии
ацетилхолина на амплитуду сопряженных с ним
деполяризующих воздействий [1, 5, 11, 12]. Не-
смотря на разные данные о величине роста мем-
бранного сопротивления (от нескольких % до
26% [11]), было установлено, что аппликация аце-
тилхолина может увеличить нейрональный ответ
на локальное подведение глутамата к дендрит-
ным локусам в несколько раз (рис. 2а) [13]. Значи-
тельное увеличение ответа связано с тем обстоя-
тельством, что ацетилхолин создает на мембране
условия, позволяющие каждому возбуждающему
постсинаптическому потенциалу (ВПСП) воз-
расти многократно по пути его следования к соме
от любой точки на дендритах при относительно
небольшом увеличении мембранного сопротив-
ления (рис. 2б). За счет формирования реакции
на ацетилхолин по мускариновому типу синапти-
ческий дендритный поток при достижении кле-
точных тел трансформируется в длительную
спайковую последовательность (рис. 1б). Чтобы
на мембране не возникли участки шунтирования
с низким сопротивлением, ацетилхолин блокиру-
ет К+-каналы не только в месте его контакта с
М-холинорецепторами, но и уменьшает транс-
мембранный К+-ток практически по всей мем-
бранной поверхности [5]. В этом можно убедить-
ся по идентичности роста потока импульсации
при подведении ацетилхолина как к соме, так и к
дендриту одного и того же нейрона [14]. Распро-
странение эффекта ацетилхолина осуществляет-
ся с помощью внутриклеточной метаболической
реакции с привлечением вторичных посредников
[15, 16]. Начало этого процесса после взаимодей-
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ствия ацетилхолина с М-холинорецепторами на
мембране происходит посредством регуляторных
G-белков, а завершается повсеместной блокадой
К+-каналов разных типов [15, 16]. Сложность ме-
таболической реакции, вызванной ацетилхоли-
ном, объясняет ее медленное развитие с мини-
мальным латентным периодом порядка 250 мс
[11], зависимость от температуры [15, 17] и связь с
энергетическим метаболизмом [8, 18].

Cледовательно, импульсное возбуждение,
представленное на рис. 1, возникает либо при вза-
имодействии медиатора с рецептором для произ-
водства деполяризации, либо при контакте с ре-

цептором медиатор меняет мембранные свойства
нейронов, позволяя ВПСП, формирующим хао-
тическую составляющую активации, более эф-
фективно продвигаться к пункту генерации и со-
здавать протяженную спайковую последователь-
ность. Возможно, что именно продление
возбудительного процесса, вызываемое М-холи-
нергической реакцией, является основой при-
способительного реагирования [19].

Любой вид адаптивной деятельности мозга
обязательно сопровождается длительным про-
цессом активации, которая запускается цен-
трально детерминированным выбросом ацетил-
холина и формированием адекватного уровня
спонтанной активности: в процессе восприятия
внешних сигналов [14, 20], при подготовитель-
ном поведении [14], при двигательных реакциях,
в том числе запускаемых условным стимулом [21,
22], при условнорефлекторном росте подкрепля-
емого уровня спонтанной активности [23] и для
поддержания сознания [19, 24, 25]. Связь М-хо-
линергической реакции с энергетическим обес-
печением и температурой предполагает зависи-
мость приспособительного реагирования и от
этих факторов. 

На срезах сенсомоторной коры морских сви-
нок в термобиологических экспериментах было
обнаружено, что характерная для ацетилхолина
длительная импульсная реакция при понижении
температуры среды от 34°С остается практически
неизменной до температурной отметки 28°С, а
далее резко снижается в диапазоне 27–29°С. На-
грев выше 34°С приводит к резкому подъему им-
пульсации нейронов в ответ на аппликацию аце-
тилхолина, что с индивидуальными вариациями
может наблюдаться при дальнейшем повышении
температуры в диапазоне 34–36°С [17]. Уровень
спонтанной активности нейронов в тех же темпе-
ратурных пределах повторяет изменения, харак-
терные для реакции на ацетилхолин [9, 17, 26].
При наличии климатических условий, удовлетво-
ряющих требованиям для осуществления этих
двух температурных переходов [27–29], и при
cущественной роли М-холинергической реакции
в организации адаптивного поведения появились
предпосылки для возникновения рептилий с
предпочитаемой температурой 28–32°С [30] и
млекопитающих с фиксированной температурой
выше 34°С в отдаленные периоды геологической
истории. Эволюционный рост скорости холинер-
гического процесса неизбежно сопряжен с изме-
нением структурных и мембранных свойств ней-
ронов, в пределах которых развертывается воз-
росшая реакция. В представленной работе
изучались особенности импульсной активности
нейронов морских свинок и черепах, которые мо-
гут свидетельствовать о разных температурных
условиях их появления и обитания.

Рис. 2. Формирование импульсной реакции на аце-
тилхолин у нейрона сенсомоторной коры. (а) – Вли-
яние ацетилхолина, подводимого к соме, на импульс-
ный ответ, вызванный аппликацией глутамата к апи-
кальному дендриту. Импульсную активность
регистрировали в срезе сенсомоторной коры морской
свинки от сомы нервной клетки cлоя V. Аппликацию
глутамата осуществляли из трехканального микро-
электрода, подводимого к дендриту (130 мкм от со-
мы). Аппликацию ацетилхолина проводили из кана-
ла, спаянного с регистрирующим электродом, к телу
нейрона. Глутамат, длительность аппликации кото-
рого отмечена чертой под записью, подводили к
дендриту до действия ацетилхолина и в 30-секундном
интервале после его соматической (в течение 4.5 с)
аппликации. Влияние ацетилхолина на активацию,
вызванную стимуляцией дендрита, тестировали два-
жды с интервалом 10 мин; каждый раз стимуляция
приводила к многократному усилению ответа на глу-
тамат [13]. (б) – Схема появления спонтанной актив-
ности при проведении по дендритам стандартных
ВПСП, амплитуда которых изображена черными
кружками, после аппликации ацетилхолина, кото-
рый увеличивает мембранное сопротивление (Rm) за
счет блокирования мембранных К+-каналов, как бы-
ло установлено в работе [11].
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МЕТОДЫ
Подготовительные процедуры. Эксперимен-

тальные животные: красноухих черепах (Pseude-
mys scripta) и морских свинок (Cavia porcellus) со-
держали в виварии МГУ имени М.В. Ломоносова.
Морских свинок содержали в стандартных клет-
ках при ежедневном кормлении и постоянном
присутствии поилок. Для черепах были оборудо-
ваны акватеррариумы, позволявшие животным
свободно плавать или находиться под дополни-
тельным обогревом с помощью ламп накалива-
ния, которые на специальной платформе созда-
вали температурные условия для обогрева до
предпочитаемых температур или выше. Раз в не-
сколько дней дополнительно включались лампы
ультрафиолетового свечения. Питание осуществ-
лялось ежедневно. 

Сравнительные эксперименты по изучению
импульсной активности нейронов теплокровных
и холоднокровных позвоночных были проведены
на срезах слоя V сенсомоторной коры морских
свинок и в области дорзолатеральной ямки боль-
ших полушарий красноухих черепах. Дорзолате-
ральная ямка приобретает значение общего кор-
реляционного центра у рептилий в связи с нача-
лом формирования корковых структур [31]. Обе
изучаемые зоны можно считать гомологичными,
поскольку их электрическая стимуляция у обоих
классов животных вызывала двигательные реак-
ции конечностей [32]. В экспериментах были ис-
пользованы 14 черепах разного пола и массы и
10 морских свинок разного пола массой 200–
250 г. Исследования в разных эксперименталь-
ных сериях проведены в весенне-летний период.

После быстрой (с помощью гильотины) дека-
питации животных и вскрытия черепа у морских
свинок выделяли поперечный блок сенсомотор-
ной коры и у черепах – поперечный блок в обла-
сти дорзолатеральной ямки. Корковые срезы
морских свинок толщиной 500 мкм изготавлива-
ли на вибротоме VSL (World Precision Instruments,
США). В отличие от шестислойного строения ко-
ры морских свинок, конечный мозг черепах име-
ет всего 2 слоя, поэтому поперечный блок выре-
занной нервной ткани их мозга уже представляет
собой срез, но в вертикальной ориентации. Его
можно разделить сагиттальными надрезами на
две-три части и перенести в резервную или рабо-
чую ячейки экспериментальной установки с не-
зависимым протоком раствора Рингера−Кребса.
Приготовленные таким образом двухслойные
срезы мозга черепах полностью погружаются в
инкубационный раствор, наполняющий экспе-
риментальные ячейки, на ту же глубину, что и
срезы коры морских свинок толщиной 500 мкм.

Инкубационный раствор, насыщенный кар-
богеном (95%О2 + 5%СО2), для срезов морских
свинок состоял из следующих компонентов

(в мМ): 124 – NaCl, 5.0 – KCl, 1.24 – KH2PO4,
1.3 – MgSO4, 2.4 – CaCl2, 26 – NaHCO3 и 10 –
глюкоза (рН среды 7.4). Для срезов черепах инку-
бационный раствор по составу несколько отли-
чался, формируя так называемый рептилийный
раствор, который в мМ имел составляющие в сле-
дующих концентрациях: 96.5 – NaCl, 2.6 – KCl,
2.5 – CaCl2, 2.0 – MgCl2, 2.0 – NaH2PO4, 26.5 –
NaHCO3 и 10 – глюкоза [33]. Раствор также насы-
щали карбогеном, он имел то же значение рН сре-
ды – 7.4. Скорость протока составляла 1.5–
3.0 мл/мин.

Температурные условия инкубирования. Во время
экспериментов все срезы инкубировали при тем-
пературе 32–34°С. Для срезов черепах эта темпера-
тура была практически равной предпочитаемым
значениям. Нормальная температура для морских
свинок составляет 38°С. Однако выше значений
34°С при искусственном инкубировании для сре-
зов теплокровных возникает гипоксическое состо-
яние из-за недостаточного обеспечения нейронов
энергетическим субстратом вследствие роста ско-
рости энергоемкой М-холинергической реакции
(см. введение). Поэтому нормальные температур-
ные условия для срезов морских свинок создава-
лись в редких случаях.

Нагрев до температуры 32–34°С осуществляли
с помощью термостата U1 (VEB, Германия). Тон-
кую температурную коррекцию проводили либо с
помощью регулирования скорости протока, либо
термостатирующим устройством на основе эле-
мента Пельтье (НПО «Биоприбор», Россия).
Температуру среды постоянно измеряли элек-
тронным термометром (НТЦ «НИКАС», Рос-
сия). Установленную температуру поддерживали
в течение всего эксперимента.

Регистрация и тестирование нервных клеток.
Импульсную активность нейронов регистрирова-
ли у всех экспериментальных животных (14 чере-
пах и 10 морских свинок). Число зарегистриро-
ванных нейронов у каждого животного варьиро-
вало от 1 до 5−6. Все нейроны черепах, как и
нейроны морских свинок, были объединены в од-
ну выборку. Объединение было возможным, по-
скольку регистрацию активности нейронов про-
водили для каждой группы животных от одной и
той же мозговой структуры. В среднем от каждой
черепахи в выборке зарегистрирована активность
2−3 нейронов, от каждой морской свинки – ак-
тивность 3−4 нейронов.

Экстраклеточную регистрацию и тестирова-
ние нервных клеток глутаматом и ацетилхолином
осуществляли с помощью трехканальных стек-
лянных микроэлектродов с общим диаметром
кончика 7.4–8.0 мкм. Регистрирующий канал за-
полняли 3 М раствором NaCl. Второй и третий
каналы использовали для электрофореза медиа-
торов к нейронам, они содержали соответственно
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1 М раствор глутамата натрия (рН 7.5, Sigma
Chemical Co., США) и 2 М раствор ацетилхолин
хлорида (рН 4.0, Sigma Chemical Co., США). Ино-
гда один из каналов для электрофореза заполняли
3 М раствором NaCl для тестирования токового
эффекта аппликации медиаторов.

Импульсную активность нейронов в срезах
морских свинок отводили в слое V сенсомотор-
ной коры (1.5–1.6 мм от пиальной поверхности) и
по всей глубине в срезах дорзолатеральной обла-
сти черепах. После обнаружения спайковой ак-
тивности отдельного нейрона одновременно с ре-
гистрацией спонтанной импульсации осуществ-
ляли подведение к клетке глутамата, что
особенно важно в случае неактивного в фоне ней-
рона с целью идентификации его присутствия.
Глутамат подводили к нейрону током 60–80 нА
(отрицательный полюс внутри электрода) дли-
тельностью 0.5–1.5 с, ацетилхолин апплицирова-
ли током 80 нА (положительный полюс внутри
электрода) длительностью 4.5 с. Удерживающий
ток величиной 3–5 нА противоположного на-
правления устанавливали в обоих форезных ка-
налах в течение всего интервала между ионофоре-
тическими инъекциями медиаторов.

Проведение экспериментов и анализ импульсной
активности нейронов. Экспериментальная проце-
дура, осуществляемая на срезах морских свинок и
черепах, протекала одинаково: после обнаруже-
ния импульсной активности нейрона спонтан-
ную активность регистрировали в течение 5–
15 мин, после чего проводили 2−3 аппликации
глутамата с интервалами 12 с и однократную ап-
пликацию ацетилхолина. Если позволяли усло-
вия регистрации, тестовую процедуру повторяли
несколько раз с интервалами не менее 10 мин.
Нейрональную импульсную активность после
усиления (DAM 80, World Precision Instruments,
США) вводили в компьютер Intel (R)Core(TM)

2DuoCPU для хранения, воспроизведения и об-
работки сигналов. Параметры импульсной актив-
ности анализировали с помощью компьютерной 
программы Power-Graph 3.3 (Россия). Исследова-
ли частоту спонтанной активности и ее регуляр-
ность, а также частотные характеристики им-
пульсных ответов на предъявление глутамата и 
ацетилхолина. Анализировали динамику реак-
ций – латентный период, длительность ответа 
(для реакций на ацетилхолин), длительность ак-
тивационного последействия (для реакций на 
глутамат). Для определения интенсивности реак-
ций на медиаторы вычисляли максимальную 
текущую среднюю по трем последовательным 
200 мс бинам (для глутамата) или трем 1-секунд-
ным бинам (для ацетилхолина) в период ответа и 
сравнивали с аналогичным показателем, вычис-
ленным в фоне. Достоверность различий данных, 
полученных на нейронах морских свинок и чере-
пах, определяли методами непараметрической 
статистики [34, 35].

PEЗУЛЬТАТЫ
Импульсные реакции на глутамат нейронов мор-

ских свинок и черепах. При микроионофоретиче-
ской аппликации глутамата была зарегистриро-
вана активность 38 нейронов морских свинок и
20 нейронов черепах. Все зарегистрированные
нейроны отвечали импульсными реакциями на
аппликацию глутамата непосредственно в зону
регистрации. На рис. 3 представлены примеры
ответов нейронов обоих видов. Средняя интен-
сивность реакциий нейронов морских свинок,
вычисленная методом максимальной текущей
средней, составила 4.7 имп/200 мс, тот же показа-
тель у нервных клеток черепах имел величину
4.2 имп/200 мс, что свидетельствует об отсут-
ствии различий по параметру интенсивности им-
пульсных ответов на глутамат у нейронов двух

Рис. 3. Импульсные реакции на микроионофоретическое подведение глутамата к нейронам морских свинок и
черепах. (а) – Примеры реакций нейронов морских свинок на микроионофоретическое подведение глутамата,
представлены реакции трех разных нейронов. (б) – Примеры реакций нейронов черепах на микроионофоретическое
подведение глутамата, представлены реакции трех разных нейронов. Отметки раздражения и интенсивность тока
электрофореза, как на рис. 1 и 2.
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видов (U-критерий Уилкоксона–Манна–Уитни).
Не были обнаружены также различия по средней
величине латентного периода импульсных реак-
ций на глутамат у нейронов морских свинок и че-
репах (205.9 мс и 216.8 мс соответственно, U-кри-
терий). Только импульсное активационное по-
следействие в ответах на глутамат у нейронов
черепах было достоверно длиннее, чем у нейро-
нов морских свинок (885 мс и 521 мс соответ-
ственно, U-критерий, α < 0.05). Спонтанно неак-
тивные нейроны морских свинок в 6 из 20 случаев
не имели активационного последейстия в ответ
на глутамат, тогда как у черепах ответ на апплика-
цию глутамата всегда длился дольше действия ме-
диатора (рис. 3б). Суммируя данные по реагиро-
ванию нейронов на глутамат следует заключить,
что глутаматергическое возбуждение у нейронов
морских свинок и черепах характеризуется прак-
тически одинаковыми импульсными параметра-
ми за исключением более длительного активаци-
онного последействия, следующего в нейронах
черепах за импульсацией, вызванной глутаматом.
Это демонстрирует стабильность ответа на глута-
мат у нейронов, принадлежащих конечному моз-
гу двух эволюционно разных групп позвоночных.

Импульсные реакции на ацетилхолин у нейронов
морских свинок и черепах. Микроионофоретиче-
ское тестирование нейронов подведением аце-
тилхолина, также как аппликацией глутамата,
проводили на тех же нервных клетках у животных
обоих видов: на 39 нейронах морских свинок и на
27 нейронах черепах. Аппликацию ацетилхолина
проводили после воздействия глутамата в область
регистрируемых нейронов. В отличие от глутама-
та, ацетилхолин вызывал активационную реак-
цию не у всех нейронов: она отсутствовала у
33.3% нейронов морских свинок и у 62.9% нейро-
нов черепах. Средняя интенсивность ответов на
ацетилхолин, определяемых методом максималь-
ной текущей средней, составила 4.1 имп/c для

всех тестируемых нейронов морских свинок, а
для нейронов черепах – 1.6 имп/c. Следователь-
но, реакции на ацетилхолин у нейронов морских
свинок превышают по интенсивности тот же по-
казатель у черепах (U-критерий Уилкоксона–
Манна–Уитни, α < 0.01). Нейроны морских сви-
нок характеризовались более коротколатентны-
ми реакциями на ацетилхолин (в среднем 5.5 с),
чем нейроны черепах (6.9 с, U-критерий, α < 0.05)
и более протяженными (11.7 с), но не достоверно
(10 с), по длительности от реакций у нейронов че-
репах (U-критерий). На рис. 4 представлена им-
пульсная реакция на ацетилхолин у нейрона мор-
ской свинки (рис. 4а) по сравнению с одной из
немногочисленных холиночувствительных реак-
ций у черепах (рис. 4б). В обоих случаях на рисун-
ке продемонстрированы типичные ответы М-хо-
линергического типа [3, 11, 12] c длительными ла-
тентными периодами и долгим течением,
превышавшим время аппликации медиатора.
Следовательно, восприятие ацетилхолина осу-
ществляется посредством одинаковых рецепто-
ров в нейронах обоих видов животных. Однако
реакция на ацетилхолин у нейрона черепахи ме-
нее выражена по сравнению с тем, что демон-
стрирует нейрон морской свинки, несмотря на то
что подведение медиатора к нейронам черепах
проводилось в условиях предпочитаемых для них
температурных значений. Параметры ответов,
представленных на рис. 4, находятся в полном со-
ответствии с данными статистического анализа,
которые свидетельствуют о слабом реагировании
на аппликацию ацетилхолина у нейронов черепах
по сравнению с нервными клетками морских
свинок. 

Спонтанная активность: частотные и структур-
ные характеристики у нейронов морских свинок и че-
репах. В эксперименте зарегистрирована спонтан-
ная активность 38 нейронов в срезах сенсомотор-
ной коры морских свинок и 36 нейронов в срезах

Рис. 4. Импульсные реакции нейронов морской свинки и черепахи на микроионофоретическое подведение
ацетилхолина. (а) – Один из примеров импульсного ответа на микроионофоретическое подведение ацетилхолина к
нейрону V слоя сенсомоторной коры морской свинки – превышение частоты импульсации над фоном 14 имп/c. (б) –
Пример слабой импульсной реакции на микроионофоретическое подведение ацетилхолина к нейрону конечного
мозга черепахи – превышение частоты импульсации над фоном 4 имп/c. Отметки раздражения и интенсивность тока
электрофореза, как на рис. 1.
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конечного мозга черепах. Нейроны морских сви-
нок имели уровень спонтанной активности от 0 до
24 имп/c, у нервных клеток черепах частота им-
пульсации варьировала в более широком диапазо-
не – от 0 до 48 имп/c. Таким образом, наибольшее
разнообразие по частоте спонтанной активности
было обнаружено у нейронов черепах, чем они су-
щественно отличались от нейронов морских сви-
нок. Проверку гипотезы об однородности (совпа-
дении) распределений частоты спонтанной актив-
ности морских свинок и черепах проводили с
помощью критерия χ-квадрат (при этом данные
были объединены в m = 5 групп: 0, 0–4, 4–8, 8–24
и 24–48 – с суммарной частотой исходов не менее
5 в каждой группе) [35]. При справедливости гипо-
тезы об однородности статистика этого критерия
имеет распределение, близкое к распределению
χ-квадрат с m – 1 = 4 степенями свободы, средним
значением 4 и среднеквадратическим отклонением
(2m)1/2 ≈ 2.82. В нашем случае статистика критерия

χ-квадрат оказалась равной 9.57, что соответствует
уровню доверия ≈0.05, поэтому различие между
выборочными распределениями частоты спонтан-
ной активности является значимым, т. е. нейроны
морских свинок по этому показателю отличаются
от нейронов черепах.

В срезах коры морских свинок явно преобла-
дали нейроны, не имевшие спонтанной активно-
сти. Их относительное число составило 44.7% от
зарегистрированных нервных клеток. Число ней-
ронов, имевших спонтанную активность, доволь-
но быстро снижалось: нейроны с импульсацией
до 4 имп/c составили 23.7%, клетки с более высо-
ким уровнем импульсации (от 4 до 24 имп/c) в
сумме составили 31.6% популяции (рис. 5а).

У черепах максимально выраженным был диа-
пазон спонтанной импульсации до 4 имп/c
(3.33 имп/c), тогда как спонтанно неактивные
нейроны составили, в отличие от нейронов мор-
ских свинок, 19.4%, т.е. встречались в два раза

Рис. 5. Распределения нейронов морских свинок и черепах по уровню спонтанной активности. (а) – Распределение
частоты спонтанной активности у нейронов морских свинок. (б) – Распределение частоты спонтанной активности у
нейронов черепах. По оси абсцисс – уровень спонтанной активности (имп/c), по оси ординат – число нейронов с
данной частотой импульсации (в %). 
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реже (рис. 5б). Вторым отличием было появление
высокочастотных (более 24 имп/c) клеток в мозге
черепах, которые ни разу не встречались среди
нейронов морских свинок. Следовательно, чере-
пахи имеют мозг, в котором доля нейронов с вы-
соким уровнем спонтанной активности представ-
лена лучше, чем у морских свинок, для мозга ко-
торых определяющим признаком является
отсутствие спонтанной импульсации у значи-
тельного числа нервных клеток.

Проблемы энергетического характера не поз-
воляют регистрировать в срезах морских свинок
активность нейронов при типичной для них тем-
пературе 38°С. Но быстрое кратковременное по-
вышение температуры инкубационного раствора
может продемонстрировать, какое преимущество
имеют теплокровные в связи с доминированием в
их новой коре спонтанно неактивных нейронов
при температуре 32–34°С. Так, кратковременное
повышение температуры выше 34°С у 6 из
15 спонтанно неактивных нейронов морских сви-
нок привело к появлению импульсации, причем в
ряде случаев значительному – до 12 имп/c, что со-
провождалось мощной реакцией на ионофорети-
ческое подведение ацетилхолина. Следовательно,
спонтанно неактивные нейроны теплокровных
обладают высокой реактивностью к ацетилхоли-
ну, что связано как с высокой температурой, так и
с высокой плотностью К+-каналов на нейрональ-
ных мембранах.

Спонтанная активность нейронов характери-
зуется не только частотой, но и структурной орга-
низацией. У черепах на пяти нейронах было заре-
гистрировано группирование импульсной актив-
ности, что среди нервных клеток морских свинок
обнаружено только у одного нейрона. Пачкооб-
разование было эпизодическим и сменялось ре-
гулярной активностью в пределах одного нейро-
на. Пачки формировались с частотой от 1 до 4 в
секунду – стандартной для каждой нервной клет-
ки. Интервалы между импульсами в пачке состав-
ляли 8–10 или 20–40 мс.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Черепахи появились на Земле 240–220 млн лет
назад [36, 37], когда завершился длительный пе-
риод постоянно повторяющихся покровных оле-
денений [38, 39]. Последним из этой череды было
карбон-пермское (или раннепермское) оледене-
ние – 290 млн лет назад [39]. Довольно прохлад-
ный климат той эпохи, называемый гумидным,
отличался большим содержанием влаги и господ-
ством представителей папоротниковидных ги-
гантов. В их жизненный цикл входил фрагмент
прорастания спор, которое происходило только
при их попадании на влажную болотистую почву,
где в развившихся заростках формировались

мужские и женские гаметы, а последующее опло-
дотворение приводило к повсеместному распро-
странению папоротников, хвощей и плаунов по
поверхности Земли. Каменноугольный период
стал рубежом для смены климатических условий,
поскольку в ранней перми после отступления
карбон-пермского оледенения климат стал быст-
ро теплеть [27], папоротниковидные из-за недо-
статка влаги, необходимой для продолжения ро-
да, уступили место голосеменным, температура
на суше все чаще превышала диапазон 27–29°С.
Только при наземном обитании в этих условиях
могли появиться черепахи [37] с предпочитаемой
температурой 28–32°С, так как эта температура
на длительный период могла установиться только
на суше, а ее совпадение с температурой перехода
М-холинергического процесса мозга на более вы-
сокий уровень [17] гарантировало адаптивный
прогресс. Таким образом, появление черепах бы-
ло связано с приспособительным преимуще-
ством, которое обеспечивалось температурным
диапазоном 28–32°С. Именно этот диапазон ста-
новится предпочитаемым, а панцирь позволяет
поддерживать эту температуру, долго сохраняя
тепло в необходимых пределах при неустойчивых
температурных условиях ранней перми [40].

Дальнейшее потепление в мезозойскую эру
привело к установлению очень жаркого (аридно-
го) климата с температурой на 6–9°С выше совре-
менного [28]. Вода в твердой фазе практически
исчезла на Земле, пропали ледниковые полярные
шапки, уровень мирового океана поднялся на
100 м по сравнению с существующим сегодня, со-
держание углекислого газа в атмосфере превыси-
ло в 4 раза его присутствие в наше время [28].
Температурные условия, таким образом, способ-
ствовали преодолению еще одного барьера для
М-холинергической реакции – 34–36°С [17], что
привело к повсеместному (включая Антарктиду)
распространению динозавров (прозавроподов)
[29], а затем и теплокровных в позднем триасе –
ранней юре [29, 41]. Cледовательно, установлен-
ная экспериментально в наше время зависимость
М-холинергической реакции мозга от температу-
ры [15, 17, 26] сотни миллионов лет назад была ис-
пользована природой для совершенствования
адаптивного поведения у счастливых обитателей
той эпохи.

Ацетилхолин, являющийся основным медиа-
тором восходящей активирующей системы мозга
[19, 24, 42, 43], выделяется из специальных холи-
нергических ядер [19, 44, 45, 46] или из холинер-
гических интернейронов разных отделов в нерв-
ной системе [47, 48] в разнообразных физиологи-
ческих условиях [49]. Выделение ацетилхолина
может носить глобальный характер или кон-
центрироваться на конкретном объекте или
конкретном движении [19, 49, 50]. В любом слу-
чае в нейронах происходит развитие длительной
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неспецифической импульсной последовательно-
сти (рис. 1б и рис. 4), направленной на поддержа-
ние специфического возбуждения (рис. 1а)
для формирования внимания, восприятия, дви-
гательной активности, обучения, памяти, созна-
ния – всех тех cостояний, за которые отвечает
ацетилхолин [19, 24, 43, 45]. Несмотря на то что
направляющий механизм для выброса ацетилхо-
лина активирующей системой мозга точно еще не
установлен [43, 46], развитие неспецифической
импульсации, сопровождающей появление
внешнего раздражителя, является не ответом на
раздражитель, а ответом на выброшенный им
ацетилхолин. Индикаторами выброса ацетилхо-
лина в коре мозга являются реакция десинхрони-
зации и компонент Р300 электроэнцефалограм-
мы [51, 52], появление которого означает, что в
нервной системе произошло восприятие раздра-
жителя [52], а не только доставка возбуждения по
специфическим путям. Аналогичные результаты
получены по условнорефлекторной методике,
свидетельствующей, что ответ на условный сиг-
нал формируется как длительный рост спонтан-
ной активности [21] и приводит к формированию
условнорефлекторного двигательного ответа с
латентным периодом 300 мс. Развитие наркоти-
ческого состояния, вызванного тиопенталом на-
трия, приводит одновременно к падению уровня
нейрональной спонтанной активности, исчезно-
вению неспецифического компонента ответа на
электрокожное раздражение и реакции на аце-
тилхолин мус-каринового типа, что вызывает
блокаду адаптивного электромиографического
ответа на электрокожное раздражение. Вместе с
тем ответ на глутамат, медиатор специфического
компонента, не страдает от наркоза [8, 18]. Следо-
вательно, приспособительные реакции формиру-
ются в мозге по неспецифическому механизму
М-холинергической системой. Скорость этого
процесса при температуре 28–32°С ниже, чем при
34–36°С [17]. Поэтому у черепах вместе со сниже-
нием импульсной реакции на ацетилхолин
(рис. 4) разнообразие приспособительных воз-
можностей также снижается, значительно усту-
пая возможностям теплокровных [53].

Специфическое возбуждение в соответствии с
пассивным механизмом его происхождения зави-
сит только от интенсивности раздражителя. В не-
специфическом возбуждении заложена изменчи-
вость реагирования, зависимая от количества и
функционального разнообразия клеточного со-
става, на который обращено действие ацетилхо-
лина, от центрально детерминированного коли-
чества выброшенного медиатора [50, 54], от ско-
рости М-холинергического процесса. В связи с
этим температура мозга у теплокровных не толь-
ко фиксирована на высоких значениях, но она
поддерживается на установленном уровне с точ-
ностью до 0.1°С [55]. Холоднокровные лишены

такой возможности, следовательно, забота о тем-
пературе мозга в предпочитаемом диапазоне (где
скорость холинергической реакции постоянна)
становится для них первой потребностью [39].

Слабая выраженность М-холинергической ре-
акции у черепах (рис. 4) влечет за собой целый
ряд структурных и функциональных различий в
их нейронах по сравнению с нейронами морских
свинок. Обеспечение ацетилхолином блокирова-
ния К+-каналов нейрональных мембран [3, 11, 12]
предполагает, что с падением скорости М-холи-
нергического процесса плотность К+-каналов на
мембранах нервных клеток у черепах окажется
пропорционально ниже, чем на мембранах мор-
ских свинок. Свидетельством низкой плотности
К+-каналов является более протяженное актива-
ционное последействие в реакциях на локальное
подведение глутамата (рис. 3). У морских свинок
активация, вызванная глутаматом, за счет высо-
кой плотности К+-каналов быстро обрывается
после завершения деполяризации (рис. 3а) и раз-
вития постактивационной гиперполяризации,
характерной для реполяризационных процессов у
млекопитающих [56, 57]. У черепах постактива-
ционная гиперполяризация выражена, по-види-
мому, очень слабо, что и приводит к увеличению
длительности активационного последействия
(885 мс), достоверно превышающего его протя-
женность у морских свинок (521 мс, U-критерий,
α < 0.05). О низкой плотности К+-каналов у ней-
ронов черепах свидетельствует также группиро-
вание спайков в спонтанной активности, заме-
ченное у пяти нервных клеток, тогда как у мор-
ских свинок обнаружен только один нейрон с
групповой активностью. Экспериментальное
уменьшение трансмембранных К+-токов у ней-
ронов млекопитающих также приводило к пачко-
образованию [57], у нейронов черепах тот же эф-
фект возникает по естественной причине из-за
низкой представленности К+-каналов на мем-
бранах.

Переходный процесс на новый эволюцион-
ный уровень удается обнаружить при онтогенети-
ческом формировании неокортикальных пира-
мидных нейронов крыс. С помощью метода
patch-clamp было обнаружено резкое увеличение
плотности К+(ВК)-каналов на нейрональных
мембранах начиная с 7-х суток после рождения и
последующее их встраивание в нейроны при
дальнейшем развитии [58]. Одновременно со
встраиванием К+-каналов происходит падение
входного сопротивления нейронов и сокращение
длительности спайка, также начиная с 7-х суток
жизни [59]. Таким образом, рост числа К+-каналов
у нейронов теплокровных становится индикатором
перехода на новый уровень М-холинергического
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процесса, характерного для температурного диа-
пазона 34–36°С.

Обнаруженные у черепах низкая скорость
М-холинергической реакции и низкая плотность
мембранных калиевых каналов их нейронов яв-
ляются, по-видимому, основными причинами
устойчивости мозга холоднокровных животных к
гипоксии. Именно у черепах эта особенность бы-
ла наиболее тщательно изучена [33, 60–62].
В аноксических условиях нейроны черепах могут
сохранять жизнеспособность 6–9 ч [60], тогда как
у млекопитающих выживаемость нейронов в тех
же условиях возможна не более нескольких минут
[61]. Анализируя причины, приводящие тепло-
кровных к гибели от гипоксии, П.В. Хочачка
сформулировал гипотезу о высокой «текучести»
их мембран, т.е. о значительной проницаемости к
ионам, наличие которых требует энергетических
затрат на восстановление гомеостаза [62]. Высо-
кая ионная проницаемость нейрональных мем-
бран облигатных теплокровных является также
причиной их гибели при гипотермии, тогда как
черепахи и гибернирующие млекопитающие спо-
собны выдерживать температуру 3–5°С в период
зимнего оцепенения. [62]. Представление о том,
что черепахи снабжены специальным протектор-
ным механизмом, который в случае кислородной
недостаточности и низких температур закрывает
ионные каналы на мембранах нейронов [61, 62],
снижает уровень глутамата и его рецепторов [61,
63] и переводит дыхательную цепь митохондрий
на нитратное дыхание вместо кислородного [64],
не всегда подтверждается [33]. Самым надежным
защитником черепах и других рептилий от гипо-
ксии следует считать естественную для темпера-
туры их обитания (28–32°С) низкую скорость
М-холинергической реакции (рис. 4). Поскольку
холинергический процесс, блокирующий К+-ка-
налы, является очень энергоемким [8, 18], при
нормоксии утилизация глюкозы в мозге черепах
снижается и оборот АТФ падает в 12 раз по срав-
нению с мозгом крыс [65]. Следовательно, мозгу
черепах, во-первых, нужно значительно меньше
энергии. Во-вторых, низкая плотность К+-кана-
лов на нейрональных мембранах черепах (рис. 3б)
препятствует выделению калиевых ионов при на-
ступлении гипоксических состояний [61, 62, 66],
что предохраняет от развития гипоксической па-
тологии, как это и было предсказано [62]. В связи
с этим в недавно проведенных экспериментах не
был обнаружен тесный контакт нейронов черепах
с клетками глии, которая постоянно удаляет из-
быточное содержание ионов К+ из среды, окру-
жающей нейроны с «текущими» мембранами,
особенно среди нейронов гетеротермов, и снаб-
жает их субстратом для цикла Кребса [14]. Поэто-
му глия в мозге теплокровных животных обеспе-
чивает стабилизацию окружающей среды для

нейронов и удовлетворяет их высокие энергети-
ческие потребности при температуре, превышаю-
щей отметку 34°С. Мозг холоднокровных живот-
ных (28–32°С) в такой опеке почти не нуждается,
поэтому он легче переносит гипоксические и ги-
потермические состояния.

Спонтанная активность является самым из-
менчивым из электрофизиологических показате-
лей нервных клеток. Она формируется в дендри-
тах за счет разной степени ослабления стандарт-
ных ВПСП по мере их продвижения к соме [67] и,
следовательно, зависит от электротонических па-
раметров дендритов – их морфологического
строения и протяженности, мембранных свойств,
степени соматического шунтирования [68]. Гео-
метрическое строение дендритов очень разнооб-
разно, что предполагает разный уровень импуль-
сации у разных нервных клеток. 

Представленное на рис. 5а распределение ней-
ронов сенсомоторной коры морских свинок де-
монстрирует, что в коре доминируют нейроны,
лишенные спонтанной активности, а максималь-
ный уровень импульсации не превышает
24 имп/c. Подобное распределение является от-
личительной особенностью, обнаруженной в
других экспериментах, проведенных на нейронах
коры [14, 67, 69]. Это свидетельствует о преобла-
дании в коре морских свинок нейронов, мембра-
ны которых имеют высокую плотность К+-кана-
лов, что создает эффект «просачивания» для воз-
буждающих токов по пути следования из
дендритов в сому [70, 71] (рис. 2б). На пирамидах
дорзального кохлеарного ядра было обнаружено,
что большое содержание мембранных К+-кана-
лов характерно именно для спонтанно неактив-
ных нейронов, тогда как устойчивый уровень
спонтанной активности зарегистрирован у нерв-
ных клеток с низкой плотностью калиевых кана-
лов [70]. Чем выше уровень спонтанной активно-
сти, тем меньше приращение импульсации
нейронов в ответ на действие ацетилхолина [67].
У спонтанно неактивных нейронов, напротив, не
только существует большое разнообразие в им-
пульсных реакциях на ацетилхолин, но самые
мощные ответы (40 имп/c) демонстрируют имен-
но молчащие нервные клетки [67]. Именно у
спонтанно неактивных нейронов прецентраль-
ной корковой области возникают высокочастот-
ные спайковые последовательности (более
100 имп/c) при формировании условнорефлек-
торных реакций на раздражитель, которые завер-
шаются двигательным условным ответом [21].
Следовательно, высокая температура, присущая
мозгу теплокровных, создает условия, при кото-
рых импульсная активность нейронов может ре-
гулироваться в очень широком диапазоне.

Распределение нейронов черепах по частоте
спонтанной активности растягивается от нулевых
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значений до 48 имп/c (рис. 5б). Спонтанно неак-
тивных нейронов вдвое меньше, чем у морских
свинок, что еще раз демонстрирует низкую пред-
ставленность К+-каналов на мембранах нервных
клеток черепах. При температуре, которая со-
ставляет диапазон их предпочтений (28–32°С),
скорость М-холинергической реакции значи-
тельно ниже, чем у морских свинок (рис. 4) [17].
Поэтому спонтанная активность нейронов чере-
пах имеет высокие значения, доступные только
для небольшого регулирования [67] слабой М-хо-
линергической реакцией. Следовательно, воз-
можности формирования многообразных при-
способительных реакций у черепах существенно
ограничены [53].
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Проведенные эксперименты полностью соот-
ветствуют действующим национальным и между-
народным нормам в области этики. Эксперимен-
тальных животных содержали в виварии МГУ
имени М.В. Ломоносова в условиях, соответство-
вавших рекомендациям, описанным в Директиве
2010/63/EU Европейского парламента по охране
животных, используемых в научных целях. Со-
блюдение стандартов проведения исследований
на животных определялось ГОСТ 33215-2014 «Ру-
ководство по содержанию и уходу за лаборатор-
ными животными – правила оборудования поме-
щений и организации процедур» и ГОСТ 33219-
2014 «Руководство по содержанию и уходу за ла-
бораторными животными – правила содержания
и ухода за рыбами, амфибиями, рептилиями».
Проводимые исследования были одобрены ко-
миссией по этике Института высшей нервной де-
ятельности и нейрофизиологии РАН на заседа-
нии 27 ноября 2024 года (протокол № 9).
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 M-Cholinergic Brain Reaction in Dependence on the Environmental Temperature 
for Cold-Blooded and Warm-Blooded Animals

 S.N. Kalabushev*, **, D.N. Voronkov***, and Yu.S. Mednikova****

*Institute of Functional Genomics, Lomonosov Moscow State University, Michurinsky prosp. 1, Moscow, 119991 Russia

**V.A. Negovsky Scientific Research Institute of General Reanimatology, ul. Petrovka 25/2, Moscow, 107031 Russia

***Research Center of Neurology, Volokolamskoe shosse 80, Moscow, 125367 Russia

****Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences,
ul. Butlerova 5A/1, Moscow, 117485 Russia

During artificial incubation of slices of the sensorimotor cortex of guinea pigs and the telencephalon of tur-
tles, microionophoretic application of acetylcholine to neurons revealed a significantly lower frequency of
spike responses in the nerve cells of turtles compared with guinea pig cells. This difference was attributed to
the different rate of M-cholinergic response in the temperature ranges of 27–29°C and 34–36°C, as found
previously in hypothermic experiments. Although experiments on guinea pig and turtle neurons were per-
formed in the same temperature range (32–34°C), the genetically determined structure of neuronal mem-
branes reflects the natural temperature dependence of both species: guinea pig membranes with a constant
habitat temperature of 38°C have a higher density of K+ channels than turtles with a preferred temperature of
28–32°C. The difference in K+ channel representation was determined by a significantly longer activation af-
tereffect in turtle neurons in response to glutamate-induced spike activation. The low density of K+ channels
on membranes and the low rate of the M-cholinergic response, which closes them at the onset of any adaptive
act, prevent neurons from forming high-frequency and long-lasting impulse sequences to regulate behavior
over a wide range in turtles with a preferred temperature of 28–32°C.

Keywords: turtles, guinea pigs, acetylcholine, glutamate, neuronal spike activity, temperature, reaction speed
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