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Обсуждается модель сокращения скелетной мышцы как комплекса активных двигательных единиц
(саркомеров). Модель саркомера учитывает, что усилия создаются миозиновыми мостиками, взаи-
модействующими с актиновыми нитями в миофибрилах мышц. Входом модели является скорость
притока ионов кальция в мышечные клетки, которая предполагается пропорциональной потенци-
алу мотонейронов. Описание усилия мышцы в целом использует осреднение по ансамблю двига-
тельных единиц. Параметры модели адаптируются для описания сокращения саркомера скелетной
мышцы. Переход от сокращения одного саркомера к медленному сокращению всей мышцы стро-
ится с применением методов разделения движения. Модель «медленного» сокращения одиночного
мышечного волокна, возбуждаемого единичным нервным импульсом, не имеет самостоятельной
ценности, так как характерное время изменения потенциала импульса мало. Тем не менее для опи-
сания тетанического мышечного сокращения, когда изменение суммарного воздействия на мышцу
достаточно гладкое, представляется допустимым использование такой приближенной модели.
Приведены приближенные численные оценки погрешности построенной модели для упрощенного
примера.
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Модели сокращения скелетной мышцы разра-
батывались с середины ХХ-го века. Основопо-
ложником моделирования мышечного сокраще-
ния можно считать А. Хилла, который в работе [1]
представил простейшую феноменологическую
модель мышечного волокна. В этой модели мыш-
ца представляет собой сократительный элемент,
к которому последовательно и параллельно под-
соединены два упругих элемента. Сократитель-
ный элемент описывает работу миозиновых мо-
стиков, последовательный упругий элемент отве-
чает за упругость актин-миозинового комплекса,
а параллельный − за упругость внутренних струк-
тур. Затем Э. Хаксли в работе [2] предложил мо-
дель мышечного сокращения на основе работы
миозиновых мостиков. Состояние мостиков у не-
го описывается вероятностью нахождения мости-
ка в состоянии генерации силы, которая зависит
от времени и текущего положения мостика отно-
сительно положения равновесия. В дальнейшем
вероятностные модели, описывающие усилие,
создаваемое мышцей, на основе информации о
числе присоединенных и свободных миозиновых

мостиков также развивались в работах [3, 4] и др.
Неопределенность параметров этих моделей не
позволила им получить широкое распростране-
ние в моделях движения. В этих условиях для ре-
шения практических задач описания движений
используются либо различные модификации мо-
дели Хилла, либо варианты λ-модели
А.Г. Фельдмана [5, 6]. Однако все эти модели
имеют достаточно приближенный характер, при-
чем первые модели не имеют четкого описания
воздействия на мышцу со стороны нервной си-
стемы, а вторые описывают управляемое поведе-
ние мышцы и учитывают функционирование не
только самой мышцы, но также части нервной
системы, реализующей рефлекс на растяжение.
Иначе говоря, все предложенные модели не поз-
воляют обоснованно решать задачу определения
мышечных усилий по информации об активно-
сти мотонейронов (миограмме). Между тем ре-
шение такой задачи представляется полезным,
например, при восстановлении усилий мышц ан-
тагонистов при движении человека [7] или при
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определении механического напряжения средин-
ного нерва внутри запястного канала [8].

В настоящее время предложены клеточные
модели сокращения мышечного волокна [9–11], в
которых учитывается кальциевая активация
миозиновых мостиков мышцы и описывается
биохимический процесс перехода мостиков из
свободного состояния в замкнутое. Мышечное
сокращение в данных моделях управляется изме-
нением притока ионов кальция в клетку. Суще-
ственное достоинство этих моделей связано с хо-
рошим знанием параметров модели клеточного
уровня. Такой подход позволил построить модель
сокращения волокон сердечных мышц и пред-
ставляется перспективным для построения моде-
ли функционирования скелетной мышцы в це-
лом. Однако при этом следует отметить возника-
ющие проблемы описания большого ансамбля
саркомеров, сокращение которых в общем случае
происходит несинхронно.

В настоящей работе обсуждается модель со-
кращения скелетной мышцы, основанная на мо-
дифицированной модели сокращения мышечно-
го волокна по образцу моделей [9–11]. Предлага-
емая модель должна быть достаточно простой с
вычислительной точки зрения, чтобы ее можно
было использовать для постановки и решения
сложных биомеханических задач описания дви-
жений конечностей человека, и в то же время –
описывать основные механические свойства
мышцы, наблюдаемые при нестационарных со-
кращениях. Формализованные основания для
упрощенного описания сокращения мышцы в
условиях гладкого тетануса представляются глав-
ной темой обсуждения.

МОДЕЛЬ БИОХИМИЧЕСКИХ ПРОЦЕССОВ 
ПРИ СОКРАЩЕНИИ МЫШЕЧНОГО 

ВОЛОКНА
Опишем коротко основные процессы, кото-

рые учитывает клеточная модель сокращения
мышечного волокна. Мышечное сокращение
происходит при смещении нитей миозина отно-
сительно нитей актина с помощью миозиновых
мостиков. В начале цикла смещения нитей мио-
зина происходит присоединение головки миози-
на вместе с АТФ и неорганическим фосфатом к
актиновой нити (состояние 1 на рис. 1). Присо-
единение сопровождается выделением продуктов
фосфата и АДФ, что провоцирует изменение
формы мостика и его поворот. Таким образом,
развивается активное усилие (состояние 2), после
чего присоединение новой молекулы АТФ вы-
зывает отсоединение головки от актина (состоя-
ние 0). Затем цикл повторяется заново. Переход в
состояние 2 и развитие усилия в каждом мостике
порождает смещение всей миозиновой нити от-
носительно актина [9]. Строго говоря, имеет ме-

сто динамический процесс замещения израсхо-
дованной АТФ. Этот процесс оказывает заметное
влияние при накоплении «усталостных» измене-
ний на временах, превышающих десятки минут,
для движений, не требующих максимальной мы-
шечной активности. В данной работе мы будем
считать, что в окружающей среде поддерживается
концентрация АТФ, достаточная для функцио-
нирования данной системы, и будем рассматри-
вать процесс на характерных временах, не превы-
шающих минут, пока «усталостные» изменения
не накапливаются.

Присоединение головки миозина к актину
возможно в случае, когда участки их связывания
не заблокированы тропомиозиновым тяжем –
спиралью, состоящей из нескольких регулятор-
ных белков, закрученной вокруг нити актина.
Связывание ионов Са2+ с белком тропонином
вызывает поворот тропомиозинового тяжа отно-
сительно актиновой нити. В неактивированной
мышце тропомиозин закрывает на актине мио-
зин-связывающие участки, а при активации
мышцы открывает их. В отсутствие ионов каль-
ция тропомиозин находится в положении, блоки-
рующем участки связывания миозина на актине
(В-состояние). После связывания с Са2+ тропо-
нин отсоединяется от актина, в результате чего
тропомиозин смещается внутрь продольной бо-
розды, образуемой актиновыми мономерами, и
часть миозин-связывающих участков освобожда-
ется (С-состояние). Последующее присоедине-
ние миозиновых головок к актину перемещает
тропомиозин еще дальше – в открытое О-состоя-
ние. Такое представление положено в основу
описания работы волокна сердечной мышцы,
представленного в работах [10, 11].

Используем это описание, немного модифи-
цировав модель с учетом особенностей сокраще-
ния волокна скелетной мышцы.

Рис. 1. Схема цикла работы миозиновых мости-
ков. 
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МОДЕЛЬ РАБОТЫ САРКОМЕРА

Опишем сокращение саркомера в соответ-
ствии с моделью [10, 11] шестью дифференциаль-
ными нелинейными уравнениями 1-го порядка. 

Активное усилие Pi, создаваемое саркомером с
номером i, зависит от числа миозиновых мости-
ков, генерирующих силу:

Pi(ni,δi,θi) = ENxbNmW(ls)ni(δi + θi)h, (1)

где E – жесткость миозиновых мостиков, Nxb –
количество головок миозина, приходящихся на
половину длины миозиновой нити, Nm – количе-
ство миозиновых нитей на единицу поперечного
сечения саркомера, ni – доля миозиновых мости-
ков в саркомере, присоединенных к актину, δi –
среднее по ансамблю безразмерное смещение
миозиновых мостиков после их присоединения к
актину, θi – доля мостиков, находящихся в состо-
янии генерации силы, h – перемещение головки
миозина из состояния 1 в состояние 2 в отсут-
ствиe нагрузок, W(ls) – длина зоны перекрытия в
половине длины саркомера (рис. 2), нормирован-
ная своим максимальным значением в рабочем
диапазоне длин саркомера: 

где ls – длина саркомера, kt,1 и kt,2 – константы
кусочно-линейной зависимости, ls0,1 и ls0,2 – дли-
ны саркомера, отвечающие участку максималь-
ной длины зоны перекрытия в саркомере.

Скорость изменения доли присоединенных
мостиков в саркомере ni зависит от максимальной
вероятности присоединения миозиновых мости-
ков Ai (степень активации тонких нитей в зоне пе-
рекрытия), скорости присоединения и отсоеди-
нения миозиновых мостиков Φ(δi) и G(δi) соот-
ветственно и доли этих мостиков в саркомере:
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где  – скорость присоединения миозиновых
мостиков в начальный момент времени, δ* – мак-
симальное значение δi во время растяжения, b
и c – константы модели. 

Изменение среднего по ансамблю смещения
мостиков δi зависит от скорости изменения поло-
вины длины саркомера vs от доли отсоединив-
шихся мостиков:

(3)

Изменение доли мостиков в мышце, которые
генерируют силу, θi зависит от среднего смеще-
ния мостиков δi и отклонения θi от стационарно-
го значения θ0(δi):

(4)

где γ – параметр модели. Изменение максималь-
ной вероятности присоединения мостиков Ai
(степень активации тонких нитей в зоне пере-
крытия) зависит от безразмерной концентрации
ионов Са2+ в мышечных клетках ci, которая нор-
мирована концентрацией кальция C0, соответ-
ствующей полунасыщению тропонина при длине
саркомера ls0 в отсутствие миозиновых головок.
Также изменение степени активации пропорцио-
нально α+ – скорости перехода тропомиозина в
С- и О-состояния после того, как тропонин свя-
зался с Са2+, и обратно относительной безраз-
мерной скорости перехода регуляторных ком-
плексов в неактивированное состояние a(niθi):

(5)

где a(niθi) = (1 + knniθi)
–1.

Здесь m и kn – это параметр аппроксимации
Хилла зависимости «сила – концентрация каль-
ция» и степень зависимости связывания Са2+
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Рис. 2. Схема саркомера. 
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c тропонином от количества присоединенных к
актину миозиновых головок соответственно. В
этих соотношениях, по сравнению с приводимы-
ми в работах [10, 11], не учитывается зависимость
степени активации саркомера от его длины. Для
сердечной мышцы эта зависимость достаточно
существенна. На основании работы [12] можно
утверждать, что для скелетной мышцы кривая
«сила – концентрация кальция» не так сильно за-
висит от длины саркомера, максимальное отли-
чие составляет около 4%, и величина концентра-
ции кальция, при которой достигается
полумаксимальная активация, меняется не суще-
ственно по сравнению с сердечной мышцей. 

Параметры m и kn главным образом определя-
ют вид кривой «сила – концентрация кальция».
Для нахождения этих параметров для скелетной
мышцы используем данные из работы [10]. Для
квазистатического режима сокращения зависи-
мость «сила – концентрация кальция» описыва-
ется уравнением Хилла:

(6)

где F% – относительное усилие, C – размерная
концентрация кальция в мышечной клетке, C50 –
концентрация кальция, при которой достигается
половина усилия, ñ – наклон зависимости
«сила – концентрация кальция».

Для модели (1)–(5) уравнение усилия для ква-
зистатического режима для заданной длины сар-
комера ls имеет вид:

(7)

где P* – максимальное усилие, развиваемое в ква-
зистационарном режиме при заданной длине сар-
комера ls. Из второго алгебраического уравнения
системы (7) при нулевой скорости изменения
длины сакромера (vs = 0) можем найти квазиста-
ционарное решение для среднего смещения мо-
стиков δi = 0. Решение Ai – ni = 0 не подходит, по-
скольку тогда из первого уравнения получится,
что niG(δi) = 0, но функция G(δi) > 0 на физиоло-
гических значениях δi, поэтому получим, что
ni = 0, но в рабочей мышце всегда присутствует
какое-то количество присоединенных мостиков.
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Поэтому из алгебраических уравнений системы
(7) можем получить следующее решение:

(8)

где для нахождения квазистационарного значе-
ния Ai требуется решить нелинейное уравнение в
системе (8):

(9)

Для нахождения параметров m и kn для скелет-
ной мышцы зададим набор значений концентра-
ций кальция Cd = {ci,1, ..., ci,d} составим функцио-
нал невязки между уравнением Хилла (6) и усили-
ем модели (9):

(10)

где значения параметров C50, ñ для зависимости
Хилла возьмем из [12]. Параметры m и kn иска-
лись с помощью нелинейного метода наимень-
ших квадратов. Найденные значения параметров
m и kn соответственно равны m = 2.36 и kn = 0.1.
Отметим, что для скелетной мышцы не проводи-
лось специальных экспериментов по оценке па-
раметра kn, который отражает степень зависимо-
сти связывания Са2+ c тропонином от количества
присоединенных к актину миозиновых головок.
Поэтому апробировать этот параметр не пред-
ставляется возможным.

Изменение концентрации ионов кальция ci в
мышечной клетке будем считать зависимым от
скорости Qi(t) притока ионов кальция  в мышеч-
ную клетку из саркоплазматического ретикулума
и внеклеточного пространства, от изменения
максимальной вероятности присоединения мио-
зиновых мостиков dAi/dt и отклонения концен-
трации кальция от c* – нормированной концен-
трации кальция в расслабленной мышце. Уравне-
ние для изменения концентрации кальция без
зависимости от длины саркомера выглядит следу-
ющим образом:
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(11)

где B – полная безразмерная концентрация Са2+-
буфера (т.е. веществ, связывающих кальций, не
считая тропонина) в мышечных клетках, kb –
нормированная постоянная равновесия буфера
(т.е. концентрация кальция, при которой полови-
на буфера связанна с кальцием), λ – скорость от-
качки Са2+ в саркоплазматический ретикулум,
c* – нормированная концентрация кальция в
расслабленной мышце, kλ – константа модели,
CTn – концентрация тропонина, C0 – концентра-
ция кальция, соответствующая полунасыщению
тропонина. В уравнении для изменения концен-
трации ионов кальция отсутствует зависимость от
степени активации тонких нитей вне зоны пере-
крытия, хотя в исходной модели [10, 11] для сер-
дечной мышцы она присутствует. Этот параметр
влияет слабо [12] и им можно пренебречь, осо-
бенно в скелетной мышце, где диапазон измене-
ния длин саркомеров при физиологических со-
кращениях меньше.

Уравнения (1)–(5) и (11) образуют полную си-
стему, описывающую формирование усилия од-
ного саркомера. В данной системе скорость при-
тока ионов кальция в мышечную клетку Qi(t) яв-
ляется входом и в общем случае должна
определяться из экспериментальных данных для
конкретного движения мышцы. Для перехода к
силе, развиваемой мышцей, необходимо просум-
мировать усилия всех активных (действующих)
саркомеров:

(12)

где S – площадь поперечного сечения мышцы,
Nsarc – число саркомеров в поперечнике мышцы. 

Мышечное сокращение происходит в резуль-
тате серии нервных импульсов, поступающих от
мотонейронов, активирующих мышечные волок-
на. Один мотонейрон воздействует на группу
(пул) саркомеров, т.е. частота и фаза сигнала для
небольшой группы саркомеров оказывается оди-
наковой. Тем самым мы получаем так называе-
мую двигательную единицу мышцы.

«Полная» модель такой системы должна вклю-
чать описание групп асинхронно действующих
саркомеров и имеет большую размерность. Такая
модель требует упрощения для применения в за-
дачах описания движений частей тела человека.

( ) ( ) ( )

( )
( )

−
= − −

+
 

= +  + 

2
* Tn

2
0λ

2

λ    
χ        ,

   

χ 1  ,
   

ii i
i i

i

B
i

i B

c cdc dACc Q t
dt C dtc k

Bkc
c k

( )
∈

= 
sarc  Саркомеры 

в мышце

,δ ,θ ,a j j j j
j

SF P n
N

Для упрощения этой модели рассмотрим харак-
терные времена системы (1)–(5), (11), описываю-
щей сокращение одного саркомера. 

ХАРАКТЕРНЫЕ ВРЕМЕНА СОКРАЩЕНИЯ 
САРКОМЕРА И ВВЕДЕНИЕ МАЛЫХ 

ПАРАМЕТРОВ
Будем рассматривать следующие ограничения

на переменные системы. 
Долю присоединенных миозиновых мостиков

ni ограничим долей присоединения мостиков в

положении равновесия  (ni ∈ ). Среднее
смещение миозиновых мостиков δi в случае сжа-
тия ограничивается величиной –h, для безраз-
мерного смещения δi соответственно получаем
величину, равную 1. В случае растяжения макси-
мальное безразмерное смещение мостиков равно
δ*, в случае нормальной средней величины уси-
лий, когда скорость растяжения мышцы не явля-
ется максимальной, δi можно ограничить величи-

ной : δi ∈  

Выражение Ai представляет собой максималь-
ную вероятность присоединения миозиновых
мостиков, поэтому лежит в пределах от 0 до 1.
То же верно и для переменной θi, которая
описывает вероятность перехода мостиков в со-
стояние генерации силы. Концентрация ионов
кальция в мышечной клетке, при которой разви-
вается максимальное усилие, составляет пример-
но 2 ⋅ 10–6 моль/л [13], что соответствует безраз-
мерной концентрации кальция ci = 1. Снизу без-
размерную концентрацию кальция ci ограничим
концентрацией кальция в расслабленной мышце
c*: ci ∈ [c*,1].

В итоге имеем следующие ограничения обла-
сти допустимых значений переменных: 

(13)

Приведенные значения позволяют оценить
характерные времена различных составляющих
движения саркомера. Характерное время измене-
ния доли присоединенных мостиков в мышце
оценим из уравнения (2) при нулевом среднем
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смещении миозиновых мостиков. Данная ситуа-
ция реализуется, например, в состоянии покоя
мышцы, когда доля присоединенных мостиков

остается практически постоянной (ni ≈ ): часть
мостиков отсоединяется, а часть присоединяется
и итоговое среднее смещение δi равно 0. В таком
случае максимальная вероятность присоедине-
ния мостиков Ai близка к 1/2. Тогда получаем: 

(14)

где  – скорость присоединения миозиновых
мостиков в начальный момент времени.

Характерное время смещения миозиновых мо-
стиков оценим из уравнения для изменения сред-
него по ансамблю смещения миозиновых мости-
ков при условии постоянной длины саркомера (3)
в линейном приближении в окрестности положе-
ния равновесия. В качестве характерного време-
ни для такого процесса выберем характерное вре-
мя присоединения мостиков:

(15)

Характерное время перехода миозиновых мо-
стиков в состояние генерации силы оценим из
линеаризованного уравнения (4) считая, что ско-
рость изменения переменной θi пропорциональ-

на . Отсюда получим 

(16)

Характерное время изменения степени ак-
тивации соответствует уравнению (5) для изме-
нения степени активации. Для уровня
усилия ≈ 50–60% концентрация ионов кальция
в мышечных клетках составляет примерно
0.5 · 10–6 моль/л, что соответствует безразмерной
концентрации кальция ci = 0.25 [13]. Поскольку
величина активной силы напрямую зависит от
числа присоединенных мостиков, то для развива-
емого усилия ni оценим равным 0.5, а вероятность
нахождения мостиков в состоянии генерации си-
лы θi будет близка к 1. Тогда 

(17)

Характерное время изменения концентрации
ионов кальция оценим из уравнения (11) для из-
менения концентрации ионов кальция в клетке в
отсутствии притока ионов. Так же рассмотрим
уровень мышечного усилия  ≈ 50–60%. Тогда
получим оценку W ≈ 2 c–1 и в качестве характер-
ного времени изменения концентрации ионов
кальция примем: 

t0 = 0.5 c. (18)

Введенные характерные времена удовлетворя-
ют следующим неравенствам: 

t4 << t3 << t2 << t1 << t0. (19)

Для проведения упрощений необходимо за-
дать характерное время t* движения подлежащего
анализу. От его значения будет зависеть вид по-
строенной упрощенной модели. Ограничимся
здесь наиболее медленными движениями челове-
ка с характерными временами порядка t* = t0. К
таким движениям можно отнести, например,
движения по удержанию или изменению верти-
кальной позы.

Для этого случая будем рассматривать следую-
щую иерархию малых параметров:

(20)

Введем безразмерное время τ и характерную
величину Δ* скорости сокращения саркомера vs: 

t = t0τ,

Δ* =  

vs = Δ*  

Для безразмерного времени τ систему уравне-
ний (1)–(7) запишем в виде: 
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(21)

ФРАКЦИОННЫЙ АНАЛИЗ МОДЕЛИ 
САРКОМЕРА

Упростим модель движения (21) с использова-
нием методики фракционного анализа [14] в мо-
дификации, допускающей иерархическую струк-
туру малых параметров [15]. Эта система содер-
жит набор малых параметров μ1, μ2, μ3, μ4 при
старших производных в четырех первых диффе-
ренциальных уравнениях. Рассмотрим вспомога-

тельную задачу при наличии постоянного воздей-
ствия Qi(t) = const.

Поскольку малые параметры μ2 и μ3 имеют
одинаковые порядки (μ2 = 2μ3), будем анализиро-
вать эквивалентную с точки зрения процедуры
фракционного анализа систему с тремя малыми
параметрами μ1, μ3, μ4, заменив μ2 = 2μ3: 

(22)

Система (22) содержит медленно изменяющу-
юся переменную cj и быстрые переменные: θj –
первой очереди, nj и δj – второй очереди и Aj –
третьей очереди. Последовательно проведем ана-
лиз однократно вырожденной системы (μ4 = 0),
двукратно вырожденной системы (μ3 = 0, μ4 = 0)
и трехкратно вырожденной системы (μ1 = 0,
μ3 = 0, μ4 = 0). Для каждой из перечисленных си-
стем проверим выполнение требований теоремы
Васильевой [15], обеспечивающих корректность

их использования в качестве приближенных мо-
делей системы (22). Основными требованиями,
гарантирующими притяжение траекторий исход-
ной системы к многообразию, на котором разви-
ваются медленные движения в силу каждой из
вырожденных систем, служат:

1) аналитичность правых частей рассматривае-
мой системы уравнений; 

2) существование изолированного корня
конечного (балансировочного) уравнения, в
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которое при μk = 0 перешло соответствующее
уравнение с множителем μk при производной,

3) асимптотическая устойчивость по перво-
му приближению и оценка области влияния
(притяжения) точек покоя присоединенных си-
стем, порознь описывающих изменение быст-
рых переменных первой, второй и третьей оче-
реди.

Аналитичность правых частей исходной си-
стемы (22) определяет и аналитичность соответ-

ствующих правых частей остальных упрощенных
(вырожденных) систем. Уравнение для доли при-
соединенных мостиков nj содержит функции
Φ(δj) и G(δj), которые являются непрерывными
функциями в рассматриваемой области (13), од-
нако их производные терпят разрыв первого рода
при δj = 0. Поэтому доопределим при δj = 0 про-
изводные этих функций с помощью гладкой
функции арктангенса:

(23)

где δ << 1. Уравнение для изменения δj содержит
множитель 1/nj, но так как в рассматриваемой об-
ласти параметров (13) мы не рассматриваем слу-
чай nj > 1, что соответствует разорванной мышце,
то особенность не возникает. Остальные уравне-
ния не содержат особенностей. В таком прибли-
жении правые части в системе уравнений (22)

можно представить в виде аналитических функ-
ций, не нарушая последующих выкладок.

ОДНОКРАТНО ВЫРОЖДЕННАЯ СИСТЕМА

Рассмотрим однократно вырожденную для (22)
систему (μ4 = 0):
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Конечное уравнение системы (24) имеет один
изолированный корень  Присоеди-
ненная система, описывающая изменение быст-
рой переменной θj первой очереди, получается,
если перейти в системе уравнений (22) к безраз-

мерному времени  изменяющемуся с той

же скоростью, что и эта переменная, и далее при-
нять μ4 = 0: 

(25)

Для каждого значения δj присоединенная систе-
ма имеет единственную точку покоя: 
Записав систему (25) в малых отклонениях от точки
покоя, в линейном приближении получим:

(26)

Коэффициент при Δθj отрицателен, следова-
тельно, точка покоя присоединенной системы
асимптотически устойчива по первому прибли-
жению.

Так как присоединенная система (25) линей-
на, то область притяжения этой точки покоя –
вся плоскость 

ДВУКРАТНО ВЫРОЖДЕННАЯ СИСТЕМА
Составим двукратно вырожденную для (22)

систему (μ3 = 0, μ4 = 0):

(27)

Систему второго и третьего конечных уравне-
ний (27) сведем с помощью соотношений (2) к
полиномиальным уравнениям:

(28)

которые имеют изолированные решения.

Введем безразмерное время  и запишем

присоединенную систему второй очереди: 

(29)

Перепишем (29) в малых отклонениях от точки

покоя  и  и рассмотрим соответству-
ющую систему первого приближения:

(30)

Можно показать, что при всех рассматривае-
мых значениях параметров точка покоя присо-

единенной системы (29) асимптотически устой-
чива по первому приближению и решение этой
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системы, отвечающее начальному условию
nj = nj(0), δj = δj(0), принадлежит области влия-
ния точки покоя.

ТРЕХКРАТНО ВЫРОЖДЕННАЯ СИСТЕМА
Рассмотрим трехкратно вырожденную для (22)

систему (μ1 = 0, μ3 = 0, μ4 = 0):

(31)

Корень  четвертого уравнения системы (31)
можно найти, подставив второе уравнение этой
системы в четвертое уравнение, после чего по-
следнее переходит в уравнение с неизвестной пе-
ременной . Это уравнение имеет решение, по-
скольку функция, ноль которой требуется найти,
гладкая в диапазоне (13) и имеет разные знаки на
концах отрезка 

Введем безразмерное время  и запишем

присоединенную систему третьей очереди:

(32)

Перепишем (32) в малых отклонениях от точки
покоя  и рассмотрим соответствующую
систему первого приближения:

(33)

Эта система имеет асимптотически устойчи-
вую точку покоя: ΔAj = 0.

Проверим, что решение присоединенной си-
стемы (32), отвечающее начальному условию
Aj = Aj(0) принадлежит области влияния точки
покоя. Будем рассматривать начальные условия
Aj = Aj(0) ∈ [0,1], лежащие в диапазоне (13). Разо-
бьем область допустимых значений переменной
Aj на две: 

 В области D1 правая часть
присоединенной системы будет положительна,
поскольку

(34)

и можно показать, что правая часть системы име-
ет отрицательную производную во всей области
определения Aj.

Следовательно, для всех траекторий с началь-
ными условиями из D1 переменная Aj будет воз-
растать, приближаясь к точке покоя . Анало-
гично в области D2 правая часть присоединенной
системы будет отрицательна, и для всех траекто-

рий с начальными условиями из D2 переменная Aj

будет убывать до точки покоя . Тем самым, об-
ласть начальных условий Aj ∈ [0,1] принадлежит
области влияния точки покоя.

Таким образом, в трех последовательных вы-
рождениях системы (22), получим следующую
упрощенную систему:

(35)

В соответствии с методом «замороженных ко-
эффициентов» [14], эта система при медленном
изменении Qj(t) будет приближенно описывать
сокращение саркомера на характерных временах
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τ ~ [O(–μ1lnμ1),1] вне пограничного слоя малой
ширины. Для отвечающих условиям (20) число-
вых значений параметров погрешность системы
(35) имеет порядок O(μ1), ширина пограничного
слоя ‒ порядок O(–μ1lnμ1).

Схожая процедура упрощения применима и
для других классов движений, характерное время
t* которых может быть соизмеримым с одним из
характерных времен рассматриваемой системы
(1)–(5),(11) (t4,t3,t2,t1).

ПОСТРОЕНИЕ МОДЕЛИ МЫШЕЧНОГО 
СОКРАЩЕНИЯ

Результаты предыдущего параграфа напрямую
неприменимы к моделированию сокращения
одиночного мышечного волокна, возбуждаемого
единичным нервным импульсом, так как харак-
терное время изменения потенциала в ходе им-
пульса мало. Приведенный выше анализ показы-
вает, что характерное время изменения входного
сигнала является основным параметром, отвеча-
ющим за корректность применения упрощенной
модели. Тогда для описания тетанического мы-
шечного сокращения (состояния длительного со-
кращения, непрерывного напряжения мышцы,
возникающего при поступлении к ней через мо-
тонейрон нервных импульсов с высокой часто-
той) – когда изменение суммарного воздействия
на мышцу достаточно гладкое, представляется
допустимым использование приближенной мо-
дели (35) «медленного» сокращения саркомера. 

Применим упрощенную модель саркомера
(35) для построения упрощенной модели мышеч-

ного волокна. Как указывалось выше, усилие, со-
здаваемое мышцей, формируется из усилий всех
саркомеров. Для упрощенной модели саркомера
тогда имеем:

(36)

Для построения упрощенной модели длину 
каждого саркомера оценим как отношение длины 
мышцы к количеству саркомеров в миофибрилах
вдоль мышцы Nsarc: 

(37)

где L – длина мышцы, Lm – длина мышцы в не-
растянутом состоянии, lso – средняя длина сарко-
мера (состояние саркомера в ненапряженной
мышце). Тогда параметры  не будут
зависеть от саркомера:

(38)
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Выше сделана замена . То есть
сила, построенная таким образом, будет пропор-
циональна некоторому среднем уровню актива-
ции  в мышце:

(39)

Поскольку уровень активации  в каждом
саркомере определяется концентрацией ионов
кальция в саркомере cj, то получается, что для
определения среднего уровня активации требует-
ся вычислить концентрации кальция в каждом
саркомере. В дополнениe к этому скорость при-
тока Qj ионов кальция в мышечную клетку не
обязана быть медленно меняющейся функцией,
поскольку она зависит от сигнала, приходящего
по мотонейрону со спинного мозга. Сделаем фор-
мальную замену Qj на некоторую усредненную
скорость притока ионов кальция . Тогда вме-
сто набора уравнений на cj получим всего лишь
одно уравнение на среднюю концентрацию каль-
ция в мышце , которая позволит определить
средний уровень активации в мышце :

(40)

Сделанный выше формальный переход к сред-
ней скорости притока ионов кальция в мышце

  позволяет выписать простую систему для
нахождения мышечной силы, которая бы учиты-
вала в интегральном виде процессы, протекаю-
щие в мышце. 

МОДЕЛИРОВАНИЕ МЫШЕЧНОГО 
СОКРАЩЕНИЯ 

Рассмотрим систему, которая состоит из мыш-
цы находящейся под действием постоянной
силы . Тогда изменение длины мышцы x под
действием этой силы описывается уравнением: 

(41)

где     – сила, создаваемая мышцей, Fp – пассивная
составляющая силы мышцы, обусловленная ее
упругими свойствами, k – пассивная жесткость
мышцы, x0 – начальная длина мышцы, m0 – мас-
са мышцы. Для косвенной проверки упрощенной
модели (40) и нахождения усредненной скорости
притока ионов кальция  вместо общей моде-
ли с большим количеством саркомеров рассмот-
рим упрощенную задачу, а именно рассмотрим
систему с 5 параллельно соединенными двига-
тельными единицами, на каждую из которых бу-
дем подавать воздействие Qi. Будем считать, что
Qi(t) представляет собой функцию, описываю-
щую серию импульсов: 

(42)

где tk,i – моменты времени, в которые начинается
мышечная активность, τ – длительность этой ак-

тивности. Задавая различные значения tk,i, можно
регулировать частоту и фазу каждого из сигналов
по отдельности. Зададим такие значения tk,i, что-
бы смоделировать импульсный сигнал с частотой
30 Гц. Сдвиг фаз между импульсами для различ-
ных двигательных единиц зададим равным T/6,
где T – период между спайками. Найдем теперь
усредненную скорость притока ионов кальция

. Сформируем  как среднюю активность
по всем двигательным единицам Qi(t), i = 1, …, 5 и
по всему времени активности:

(43)

где t1 и t2 – моменты времени начала и конца мы-
шечной активности соответственно. Функция,
описываемая выражением (43), представляет
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собой кусочно-постоянную функцию, которая
терпит скачок при t1 и t2. Результаты интегриро-
вания упрощенной системы представлены на
рис. 3. Значения параметров, которые использо-
вались при интегрировании, представлены в
табл. 1. 

Начало мышечной активности t1 = 1 с, а конец
мышечной активности t2 ≈ 4.2 с. Решение, полу-
чаемое из упрощенной модели, достаточно хоро-
шо описывает поведение мышцы. Средняя ам-
плитуда усилия на всем участке активности [t1, t2]
для полной системы равна 4.84 Н, для упрощен-
ной системы средняя амплитуда – 5.00 Н, то есть
разница составляет примерно 3.3%. Таким обра-
зом, построенная упрощенная модель мышцы
может описывать достаточно хорошо мышечное
усилие, используя только один входной сигнал –
среднюю активность по всем двигательным еди-
ницам и по всему времени активности. Предпо-
лагается, что в качестве такого сигнала можно ис-
пользовать, например, огибающую миограммы.

ЗАКЛЮЧЕНИЕ
В работе обсуждается модель сокращения ске-

летной мышцы, построенная на основе модели
сокращения мышечного волокна. Существенным
достоинством такой модели представляется хоро-
шее знание параметров, определяемых на клеточ-
ном уровне. Такая модель имеет небольшое число
неизвестных параметров. Использование проце-
дуры фракционного анализа [15] для упрощения
модели позволило перейти от модели группы
синхронно активируемых волокон к описанию
сокращения всего ансамбля активных мышечных
единиц. Использование предложенной упрощен-
ной модели для описания сокращения одиночно-

го мышечного волокна, возбуждаемого единич-
ным нервным импульсом, оказывается невоз-
можным, так как характерное время изменения
потенциала в ходе импульса мало. Тем не менее,
для описания тетанического мышечного сокра-
щения, когда изменение суммарного воздействия
на мышцу достаточно гладкое, использование
предлагаемой приближенной модели представля-
ется допустимым. Это подтверждается числен-
ным интегрированием задачи для небольшого ан-
самбля двигательных единиц. Оно показало, что
построенная таким образом модель сокращения
мышцы с погрешностью порядка 5–10% описы-
вает поведение более полной модели мышцы,
учитывающей асинхронную иннервацию отдель-
ных групп двигательных единиц. 

Вид упрощенной модели показывает, что в
полном описании содержится нелинейная «упру-
гая» составляющая усилия. В отличие от приня-
тых моделей Хилла и λ-модели выведенная в ста-
тье упрощенная модель, помимо этого, включает
единственное дифференциальное уравнение на
среднюю концентрацию ионов кальция в мышце,
что может оказаться значимым при описании
процессов, развивающихся во времени.

Если деформации мышцы достаточно малы,
то упрощенную систему уравнений можно рас-
сматривать в линейном приближении.

Предлагаемая процедура построения упро-
щенной модели при выделении другого характер-
ного времени позволит рассматривать упрощен-
ные соотношения математической модели на раз-
ных временных масштабах, например для
быстрых движений с характерными временами
порядка 0.1 с.

Рис. 3. Левый график – активное усилие, создаваемое мышцей (полная модель – сплошная линия, упрощенная
модель – пунктирная линия). Правый график – модуль разности между усилием в полной модели и усилием в
упрощенной модели. Масса мышцы – 10 кг. Постоянная сила  = 10 Н. Параметры модели представлены в табл. 1.P
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Таблица 1. Параметры модели
Обозначение Параметр Значение

h Перемещение головки миозина из состояния 1 в состояние 2 в отсутствиe 
нагрузок

10 нм

c Константа модели 8.5
ε Константа модели 0.05
γ Константа модели 4

kn Зависимость связывания Са2+ c тропонином от количества присоединенных 
к актину миозиновых головок

0.1

m0 Масса 10 кг

E Жесткость миозиновых мостиков 0.0025 Н/м

Nxb Количество головок миозина, приходящихся на половину длины миозиновой 
нити

150

Nm Количество миозиновых нитей на единицу поперечного сечения саркомера 2.5·1014 м–2

f0
+ Скорость протекания процесса присоединения миозиновых головок 75 с–1

α+ Скорость перехода тропомиозина в С- и О-состояния 35 с–1

λ Скорость откачки Са2+ 500 с–1

c* Нормированная концентрация кальция в расслабленной мышце 0.05

kλ Константа модели 0.15

CTn Концентрация тропонина 8·10–6 моль/л
C0 Концентрация кальция, соответствующая полу насыщению тропонина 2·10–6 моль/л
k Пассивная жесткость мышц 1.3·106 Н/м

B Полная безразмерная концентрация Са2+ 50

kB Концентрация кальция, при которой половина Са2+-буфера связана с 
кальцием

0.5

S Площадь поперечного сечения мышцы 15.2 см2

m Параметр аппроксимации Хилла зависимости «сила–концентрация кальция» 2.36
kt Константа модели –15/4

δ* Максимальное среднее безразмерное смещение мостиков во время 
растяжения

0.4

lso Длина саркомеров в среднем положении сустава в мышце 2 мкм

b Константа модели 1.5
Nsarc Число саркомеров в миофибрилах вдоль мышцы 7.2·104

x0 Начальная длина мышцы 14.08 см
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 Simplified Model of Skeletal Muscle Contraction Dynamics 

 I.D. Bekerov*, A.V. Vlakhova*, and P.A. Kruchinin*

*Department of Mechanics and Mathematics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992 Russia

The skeletal muscle contraction model as a complex of active motor units (sarcomeres) is discussed. The sar-
comere model takes into account that forces are generated by myosin bridges interacting with actin filaments
in muscle myofibrils. The input of the model is the rate of calcium ion influx into muscle cells, which is as-
sumed to be proportional to the motor neurons potential. The description of the muscle force as a whole uses
averaging over an ensemble of motor units. The parameters of the model are adapted to describe contraction
of a skeletal muscle sarcomere. The transition from contraction of a single sarcomere to slow contraction of
the whole muscle is constructed using motion separation methods. The model of “slow” contraction of a sin-
gle muscle fiber excited by a single nerve impulse has no independent value because the characteristic time of
change of the impulse potential is short. Nevertheless, for description of tetanic muscle contraction, when the
change in the total action on the muscle is smooth enough, it seems acceptable to use such an approximate
model. Approximate numerical estimates of the error of the constructed model for a simplified example are
given.

Keywords: skeletal muscle, muscle contraction, muscle model
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