RAS BiologyБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

Properties of the Fluorescent Kv1.2 Channel Assembled from Concatemers of Alpha-Subunits

PII
S0006302925010101-1
DOI
10.31857/S0006302925010101
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
86-92
Abstract
α -Subunits of the potassium voltage-gated channel Kv1.2, whose function is to regulate neuronal conductivity in the central nervous system, form heterotetramers with α-subunits of related Kv1 channels, which differ in composition and stoichiometry. To study heterotetrameric channels in vitro, concatemers are constructed by sequentially connecting the Kv1 α-subunits. The method for constructing concatemers that allows one to reproduce the properties of native channels requires detailed study. In this work, concatemers (dimers) of Kv1.2 α-subunits (mKate2-Kv1.2-Kv1.2) labeled with the fluorescent protein mKate2 were constructed Kv and their expression was carried out in mouse neuroblastoma Neuro-2a cells. It was shown that the Kv1.2 channel assembled from concatemers is almost identical in its properties, namely, intracellular distribution, ability to integrate into the plasma membrane, efficiency of interaction with a peptide blocker, as well as in its electrophysiological characteristics, to the Kv1.2 channel based on monomeric α-subunits mKate2-Kv1.2.
Keywords
калиевые каналы потенциал-зависимые гетеротетрамеры пептидные блокаторы электрофизиология конфокальная микроскопия
Date of publication
24.10.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Gonzalez C., Baez-Nieto D., Valencia I., Oyarzún I., Rojas P., Naranjo D., and Latorre R. K+ channels: Function-structural overview. Compr. Physiol., 2 (3), 2087–2149 (2012). DOI: 10.1002/cphy.c110047
  2. 2. Kuzmenkov A. I., Grishin E. V., and Vassilevski A. A. Diversity of potassium channel ligands: focus on scorpion toxins. Biochemistry (Moscow), 80, 1764–1799 (2015). DOI: 10.1134/S0006297915130118
  3. 3. Ranjan R., Logette E., Marani M., Herzog M., Tâche V., Scantamburlo E., Buchillier V., and Markram H. A kinetic map of the homomeric voltage-gated potassium channel (Kv) family. Front. Cell. Neurosci., 13, 358 (2019). DOI: 10.3389/fncel.2019.00358
  4. 4. Grissmer S., Nguyen A. N., Aiyar J., Hanson D. C., Mather R. J., Gutman G. A., Karmilowicz M. J., Auperin D. D., and Chandy K.G. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol. Pharmacol., 45, 1227 (1994).
  5. 5. Yu W., Xu J., and Li M. NAB domain is essential for the subunit assembly of both alpha-alpha and alpha-beta complexes of shaker-like potassium channels. Neuron, 16, 441–453 (1996). DOI: 10.1016/S0896-6273(00)80062-8
  6. 6. Shamotienko O. G., Parcej D. N., and Dolly J. O. Subunit combinations defined for K+ channel Kv1 subtypes in synaptic membranes from bovine brain. Biochemistry, 36, 8195–8201 (1997). DOI: 10.1021/BI970237G
  7. 7. Dodson P. D., Barker M. C., and Forsythe I. D. Two heteromeric Kv1 potassium channels differentially regulate action potential firing. J. Neurosci., 22, 6953–6961 (2002). DOI: 10.1523/JNEUROSCI.22-16-06953.2002
  8. 8. Capera J., Serrano-Novillo C., Navarro-Pérez M., Cassinelli S., and Felipe A. The potassium channel odyssey: Mechanisms of traffic and membrane arrangement. Int. J. Mol. Sci., 20 (3), 734 (2019). DOI: 10.3390/ijms20030734
  9. 9. Pinatel D. and Faivre-Sarrailh C. Assembly and function of the juxtaparanodal Kv1 complex in health and disease. Life (Basel), 11, 1–22 (2020). DOI: 10.3390/LIFE11010008
  10. 10. Rea R., Spauschus A., Eunson L. H., Hanna M. G., and Kullmann D. M. Variable K(+) channel subunit dysfunction in inherited mutations of KCNA1. J. Physiol., 538 (Pt 1), 5–23 (2002). DOI: 10.1113/jphysiol.2001.013242
  11. 11. Al-Sabi A., Shamotienko O., Ni Dhochartaigh S., Muniyappa N., Le Berre M., Shaban H., Wang J., Sack J. T., and Dolly J. O. Arrangement of Kv1 alpha subunits dictates sensitivity to tetraethylammonium. J. Gen. Physiol., 136 (3), 273–282 (2010). DOI: 10.1085/jgp.200910398
  12. 12. Solé L., Sastre D., Colomer-Molera M., VallejoGracia A., Roig S. R., Pérez-Verdaguer M., Lillo P., Tamkun M. M., and Felipe A. Functional consequences of the variable stoichiometry of the Kv1.3-KCNE4 complex. Cells, 9 (5), 1128 (2020). DOI: 10.3390/cells9051128
  13. 13. Orlov N. A., Ignatova A. A., Kryukova E. V., Yakimov S. A., Kirpichnikov M. P., Nekrasova O. V., and Feofanov A. V. Combining mKate2-Kv1.3 channel and Atto488-hongotoxin for the studies of peptide pore blockers on living eukaryotic cells. Toxins (Basel), 14 (12), 858 (2022). DOI: 10.3390/toxins14120858
  14. 14. Orlov N. A., Kryukova E. V., Efremenko A. V., Yakimov S. A., Toporova V. A., Kirpichnikov M. P., Nekrasova O. V., and Feofanov A. V. Interactions of the Kv1.1 channel with peptide pore blockers: A fluorescent analysis on mammalian cells. Membranes (Basel), 13 (7), 645 (2023). DOI: 10.3390/membranes13070645
  15. 15. Ignatova A. A., Kryukova E. V., Novoseletsky V. N., Kazakov O. V., Orlov N. A., Korabeynikova V. N., Larina M. V., Fradkov A. F., Yakimov S. A., Kirpichnikov M. P., Feofanov A. V., and Nekrasova O. V. New high-affinity peptide ligands for Kv1.2 channel: Selective blockers and fluorescent probes. Cells, 13 (24), Nekrasova O., Kudryashova K., Fradkov A., Yakimov S., Savelieva M., Kirpichnikov M., and Feofanov A. Straightforward approach to produce recombinant scorpion toxins – Pore blockers of potassium channels. J. Biotechnol., 241, 127 (2017). DOI: 10.1016/j.jbiotec.2016.11.030
  16. 16. Zhu J., Gomez B., Watanabe I., and Thornhill W. B. Amino acids in the pore region of Kv1 potassium channels dictate cell-surface protein levels: a possible trafficking code in the Kv1 subfamily. Biochem. J., 388, 355–362 (2005). DOI: 10.1042/BJ20041447
  17. 17. Nilsson M., Lindström S. H., Kaneko M., and Pantazis A. An epilepsy-associated KV1.2 charge-transfer-center mutation impairs KV1.2 and KV1.4 trafficking. Proc. Natl. Acad. Sci. USA, 119 (17), e2113675119 (2022). DOI: 10.1073/pnas.2113675119
  18. 18. Coetzee W. A., Amarillo Y., Chiu J., Chow A., Lau D., McCormack T., Moreno H., Nadal M. S., Ozaita A., Pountney D., Saganich M., Vega-Saenz de Miera E., and Rudy B. Molecular diversity of K+ channels. Ann. N. Y. Acad. Sci., 868, 233–285 (1999). DOI: 10.1111/j.1749-6632.1999.tb11293.x
  19. 19. Yee J. X., Rastani A., and Soden M. E. The potassium channel auxiliary subunit Kvβ2 (Kcnab2) regulates Kv1 channels and dopamine neuron firing. J. Neurophysiol., 128, 62–72 (2022). DOI: 10.1152/JN.00194.2022
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library