- PII
- S0006302925010113-1
- DOI
- 10.31857/S0006302925010113
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 1
- Pages
- 93-103
- Abstract
- In the present study, we functionally analyzed a missense mutation c.67A>T (p.Met23Leu) in the KCNE2 potassium channel Kv11.1 complementary subunit gene identified in a patient with asymptomatic QT interval prolongation on electrocardiogram. We artificially introduced this substitution into the plasmid encoding the KCNE2 subunit and expressed the mutant gene in Chinese hamster ovary cells together with the wild-type Kv11.1 channel gene to evaluate the effect of the mutation on IK1 current parameters. We used a comprehen-sive approach including the study of the integrated IKr current using the patch-clamp method in a whole-cell configuration in potential fixation mode. The study showed that the c.67A>T mutation (p.Met23Leu) is realized in a gain-of-function type, but the current density carried by Kv11.1 channels is significantly reduced. Fluorescence microscopy showed impaired trafficking of a channel coexpressed with the mutant subunit to the cell surface. We applied molecular modeling to examine the location of the mutant subunit relative to the membrane.
- Keywords
- потенциал-зависимые калиевые ионные каналы синдром удлиненного интервала QT первичные каналопатии взаимодействие с мембраной
- Date of publication
- 24.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 21
References
- 1. Соколова О. С., Кирпичников М. П., Шайтан К. В., Антонов М. Ю., Волынцева А. Д., Глухов Г. С., Горделий В. И., Деркачева Н. И., Карлова М. Г., Кузьмичёв П. К., Люкманова Е. Н., Моисеенко А. В., Мышкин М. Ю., Некрасова О. В., Новоселецкий В. Н., Охрименко И. С., Парамонов А. С., Попинако А. В., Станишнева-Коновалова Т. Б., Трифонова Е. С., Феофанов А. В., Чупин В. В., Шевцов М. Б. и Шенкарёв З. О. Современные методы изучения структуры и функций ионных каналов (Товарищество научных изданий КМК, М., 2020). EDN: ICASCW
- 2. Chen S., Francioli L. C., Goodrich J. K., Collins R. L., Kanai M., Wang Q., Alföldi J., Watts N. A., Vittal C., Gauthier L. D., Poterba T., Wilson M. W., Tarasova Y., Phu W., Grant R., Yohannes M. T., Koenig Z., FarjounY., Banks E., Donnelly S., Gabriel S., Gupta N., Ferriera S., Tolonen C., Novod S., Bergelson L., Roazen D., Ruano-Rubio V., Covarrubias M., Llanwarne C., Petrillo N., Wade G., Jeandet T., Munshi R., Tibbetts K., Genome Aggregation Database (gnomAD) Consortium, O’Donnell-Luria A., Solomonson M., Seed C., Martin A. R., Talkowski M. E., Rehm H. L., Daly M. J., Tiao G., Neale B. M., MacArthur D. G., and Karczewski K. J. A genomic mutational constraint map using variation in 76,156 human genomes. Nature, 625, 92–100 (2024). DOI: 10.1038/s41586-023-06045-0
- 3. Schwartz P. J., Ackerman M. J., George A. L., Jr., and Wilde A. A. M. Impact of genetics on the clinical management of channelopathies. J. Am. Coll. Cardiol., 62 (3), 169–180 (2013). DOI: 10.1016/j.jacc.2013.04.044
- 4. Bohnen M. S., Peng G., Robey S. H., Terrenoire C., Iyer V., Sampson K. J., and Kass R. S. Molecular pathophysiology of congenital long QT syndrome. Physiol. Rev., 97 (1), 89–134 (2017). DOI: 10.1152/physrev.00008.2016
- 5. Schwartz P. J., Stramba-Badiale M., Crotti L., Pedrazzini M., Besana A., Bosi G., Gabbarini F., Goulene K., Insolia R., Mannarino S., Mosca F., Nespoli L., Rimini A., Rosati E., Salice P., and Spazzolini C. Prevalence of the congenital long-QT syndrome. Circulation, 120 (18), 1761–1767 (2009). DOI: 10.1161/CIRCULATIONAHA.109.863209
- 6. Schwartz P. J. and Ackerman M. J. The long QT syndrome: a transatlantic clinical approach to diagnosis and therapy. Eur. Heart J., 34 (40), 3109–3116 (2013). DOI: 10.1093/eurheartj/eht089
- 7. Schwartz P. J., Priori S. G., Spazzolini C., Moss A. J., Vincent G. M., Napolitano C., Denjoy I., Guicheney P., Breithardt G., Keating M. T., Towbin J. A., Beggs A. H., Brink P., Wilde A. A., Toivonen L., Zareba W., Robinson J. L., Timothy K. W., Corfield V., Wattanasirichaigoon D., Corbett C., Haverkamp W., SchulzeBahr E., Lehmann M. H., Schwartz K., Coumel P., and Bloise R. Genotype-phenotype correlation in the longQT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation, 103 (1), 89–95 (2001). DOI: 10.1161/01.cir.103.1.89
- 8. Schwartz P. J. and Crotti L. Long and short QT syndromes. In: Cardiac Electrophysiology: From Cell to Bedside (Seventh Edition), Ed. by D. P. Zipes, J. Jalife, and W. G. Stevenson (Elsiever, 2018), pp. 893–904. DOI: 10.1016/B978-0-323-44733-1.00093-6
- 9. Schwartz P. J., Crotti L., and George A. L. Jr. Modifier genes for sudden cardiac death. Eur. Heart J., 39 (44), 3925–3931 (2018). DOI: 10.1093/eurheartj/ehy502
- 10. Lundby A., Andersen M. N., Steffensen A. B., Horn H., Kelstrup C. D., Francavilla C., Jensen L. J., Schmitt N., Thomsen M. B., and Olsen J. V. In vivo phosphoproteomics analysis reveals the cardiac targets of beta-adrenergic receptor signaling. Sci. Signal., 6 (278), rs11 (2013). DOI: 10.1126/scisignal.2003506
- 11. Marx S. O., Kurokawa J., Reiken S., Motoike H., D’Armiento J., Marks A. R., and Kass R. S. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science, 295 (5554), 496–499 (2002). DOI: 10.1126/science.1066843
- 12. Chen L., Marquardt M. L., Tester D. J., Sampson K. J., Ackerman M. J., and Kass R. S. Mutation of an A-kinaseanchoring protein causes long-QT syndrome. Proc. Natl. Acad. Sci. USA, 104 (52), 20990–20995 (2007). DOI: 10.1073/pnas.0710527105
- 13. Anantharam A. and Abbott G. W. In: The hERG Cardiac Potassium Channel: Structure, Function and Long QT Syndrome. Novartis Foundation Symposium 266, Ed. by D. J. Chadwick and J. Goode (Novartis Foundation, 2005), pp. 100–112; discussion 112-7, 155-8.
- 14. Eldstrom J. and Fedida D. The voltage-gated channel accessory protein KCNE2: multiple ion channel partners, multiple ways to long QT syndrome. Expert Rev. Mol. Med., 13, e38 (2011). DOI: 10.1017/S1462399411002092
- 15. Takumi T., Moriyoshi K., Aramori I., Ishii T., Oiki S., Okada Y., Ohkubo H., and Nakanishi S. Alteration of channel activities and gating by mutations of slow ISK potassium channel. J. Biol. Chem., 266 (33), 22192–22198 (1991). DOI: 10.1016/S0021-9258(18)54553-1
- 16. Gage S. D. and Kobertz W. R. KCNE3 truncation mutants reveal a bipartite modulation of KCNQ1 K+ channels. J. Gen. Physiol., 124 (6), 759–771 (2004). DOI: 10.1085/jgp.200409114
- 17. Li P., Liu H., Lai C., Sun P., Zeng W., Wu F., Zhang L., Wang S., Tian C., and Ding J. Differential modulations of KCNQ1 by auxiliary proteins KCNE1 and KCNE2. Sci. Rep., 4, 4973 (2014). DOI: 10.1038/srep04973
- 18. Li Z., Li S., Luo M., Jhong J. H., Li W., Yao L., Pang Y., Wang Z., Wang R., Ma R., Yu J., Huang Y., Zhu X., Cheng Q., Feng H., Zhang J., Wang C., Hsu J. B., Chang W. C., Wei F. X., Huang H. D., and Lee T. Y. dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post-translational modifications. Nucl. Acids Res., 50 (D1), D471–D479 (2022). DOI: 10.1093/nar/gkab1017
- 19. Zhang M., Wang Y., Jiang M., Zankov D. P., Chowdhury S., Kasirajan V., and Tseng G. N. KCNE2 protein is more abundant in ventricles than in atria and can accelerate hERG protein degradation in a phosphorylation-dependent manner. Am. J. Physiol. Heart. Circ. Physiol., 302 (4), H910–H922 (2012). DOI: 10.1152/ajpheart.00691.2011
- 20. Liu L., Tian J., Lu C., Chen X., Fu Y., Xu B., Zhu C., SunY., Zhang Y., Zhao Y., and Li Y. Electrophysiological characteristics of the LQT2 syndrome mutation KCNH2-G572S and regulation by accessory protein KCNE2. Front. Physiol., 7, 650 (2016). DOI: 10.3389/fphys.2016.00650
- 21. Jordan M., Schallhorn A., and Wurm F. M. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucl. Acids Res., 24 (4), 596-601 (1996). DOI: 10.1093/nar/24.4.596
- 22. Sambrook J. and Russell D. W. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory Press, N.-Y., 2001).
- 23. Pogozheva I. D., Armstrong G. A., Kong L., Hartnagel T. J., Carpino C. A., Gee S. E., Picarello D. M., Rubin A. S., Lee J., Park S., Lomize A. L., and Im W. Comparative molecular dynamics simulation studies of realistic eukaryotic, prokaryotic, and archaeal membranes. J. Chem. Inf. Model., 62 (4), 1036–1051 (2022). DOI: 10.1021/acs.jcim.1c01514
- 24. Miranda W. E., Guo J., Mesa-Galloso H., Corradi V., Lees-Miller J. P., Tieleman D. P., Duff H. J., and Noskov S. Y. Lipid regulation of hERG1 channel function. Nature Commun., 12 (1), 1409 (2021). DOI: 10.1038/s41467-021-21681-8
- 25. Lomize M. A., Pogozheva I. D., Joo H., Mosberg H. I., and Lomize A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucl. Acids Res., 40 (Database issue), D370–376 (2012). DOI: 10.1093/nar/gkr703
- 26. Jo S., Kim T., Iyer V. G., and Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem., 29 (11), 1859–1865 (2008). DOI: 10.1002/jcc.20945
- 27. Humphrey W., Dalke A., and Schulten K. VMD: visual molecular dynamics. J. Mol. Graph., 14 (1), 33–38 (1996). DOI: 10.1016/0263-7855(96)00018-5
- 28. Olesen M. S., Andreasen L., Jabbari J., Refsgaard L., Haunso S., Olesen S. P., Nielsen J. B., Schmitt N., and Svendsen J. H. Very early-onset lone atrial fibrillation patients have a high prevalence of rare variants in genes previously associated with atrial fibrillation. Heart Rhythm, 11 (2), 246–251 (2014). DOI: 10.1016/j.hrthm.2013.10.034
- 29. Nielsen J. B., Bentzen B. H., Olesen M. S., David J. P., Olesen S. P., Haunso S., Svendsen J. H., and Schmitt N. Gain-of-function mutations in potassium channel subunit KCNE2 associated with early-onset lone atrial fibrillation. Biomark Med., 8 (4), 557–570 (2014). DOI: 10.2217/bmm.13.137