- PII
- S0006302925020124-1
- DOI
- 10.31857/S0006302925020124
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 2
- Pages
- 333-346
- Abstract
- The objective of the study was to investigate the impact of barium cation doping on the phase and structural properties of octacalcium phosphate powder synthesized via a low-temperature method, along with its biocompatibility, particularly under in vitro circumstances that mimic inflammation. It was revealed that doping with Ba2+ cations in the concentration range used (1, 5 and 10 calculated %) does not interfere with the lowtemperature chemical transformation of DPCD and its transformation into OCP, however, the percentage of real substitution is at a maximum of 6.7 at.%. The results of in vitro studies confirm that the substitution of Ca2+ for Ba2+ in the structure of OCP does not affect its cytotoxic properties and all the studied variants of low-temperature OCP and its Ba-substituted variants at the recommended concentration of 1 mg/ml do not have a cytotoxic effect and are biocompatible. The effects revealed for OCP-Ba10, namely the absence of an effect on the content of lysosomes and ROS in human macrophages under normal conditions and a significant decrease in ROS production under inflammatory conditions, as well as a significant increase in the constitutive activation of T-lymphocytes, indicate that these processes are directly and dose-dependently associated with Ba2+ cations in the composition of OCP. The proposed approach of low-temperature chemical transformation of Ba2+-substituted variants of OCP is promising and is of interest for obtaining CPC materials with specified properties. The obtained Ba2+-substituted variants of OCP are safe and biocompatible, and the most effective variant of OCP with a maximum degree of Ca2+ substitution by Ba2+ 10% (OCP-Ba10) is bioactive and has potential antioxidant and immunomodulatory effects.
- Keywords
- биокерамика остеопластические материалы низкотемпературная химическая трансформация фосфаты кальция октакальцийфосфат допирование барий-замещенные фосфаты кальция
- Date of publication
- 24.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 21
References
- 1. Dorozhkin S. V. Calcium orthophosphate (CaPO4) containing composites for biomedical applications: Formulations, properties, and applications. J. Composites Sci., 8 (6), 218 (2024). DOI: 10.3390/jcs8060218
- 2. Минайчев В. В. Клеточные и тканевые аспекты биосовместимости кальций-фосфатных соединений, полученных низкотемпературным синтезом. Дис. … канд. биол. наук (ИТЭБ, Пущино, 2024).
- 3. Kovrlija I., Locs J., and Loca D. Incorporation of barium ions into biomaterials: Dangerous liaison or potential revolution? Materials, 14 (19), 5772 (2021). DOI: 10.3390/ma14195772
- 4. Dorozhkin S. V. Calcium orthophosphate (CaPO4)based bioceramics: Preparation, properties, and applications. Coatings, 12 (10), 1380 (2022). DOI: 10.3390/coatings12101380
- 5. Pankratov A. S., Fadeeva I. S., Minaychev V. V., Kirsanova P. O., Senotov A. S., Yurasova Y. B., and Akatov V. S. A biointegration of micro- and nanocrystalline hydroxyapatite: problems and perspectives. Genes & Cells, 13 (3), 46–51 (2018). DOI: 10.23868/201811032
- 6. Takayanagi H., Ogasawara K., Hid, S., Chiba T., Murata S., Sato K., Takaoka A., Yokochi T., Oda H., Tanaka K., Nakamura K., and Taniguchi T. T-cell-mediated regulation of osteoclastogenesis by signalling crosstalk between RANKL and IFN-gamma. Nature, 408 (6812), 600–605 (2000). DOI: 10.1038/35046102
- 7. Okamoto K. and Takayanagi H. Osteoimmunology. Cold Spring Harbor Perspect. Med., 9 (1), a031245 (2019). DOI: 10.1101/cshperspect.a031245
- 8. Boanini E., Gazzano M., and Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater., 6 (6), 1882–1894 (2010). DOI: 10.1016/j.actbio.2009.12.041
- 9. Teterina A. Y., Smirnov I. V., Fadeeva I. S., Fadeev R. S., Smirnova P. V., Minaychev V. V., Kobyakova M. I., Fedotov A. Y., Barinov S. M., and Komlev V. S. Octacalcium phosphate for bone tissue engineering: Synthesis, modification, and in vitro biocompatibility assessment. Int. J. Mol. Sci., 22 (23), 1274 (2021). DOI: 10.3390/ijms222312747
- 10. Minaychev V. V., Smirnova P. V., Kobyakova M. I., Teterina A. Y., Smirnov I. V., Skirda V. D., Alexandrov A. S., Gafurov M. R., Shlykov M. A., Pyatina K. V., Senotov A. S., Salynkin P. S., Fadeev R. S., Komlev V. S., and Fadeeva I. S. Octacalcium phosphate for bone tissue engineering: synthesis, modification, and in vitro biocompatibility. assessment. Biomedicines, 12 (2), 263 (2024). DOI: 10.3390/biomedicines12020263
- 11. O’Neill E., Awale G., Daneshmandi L., Umerah O., and Lo K. W. The roles of ions on bone regeneration. Drug Discov. Today, 23 (4), 879–890 (2018). DOI: 10.1016/j.drudis.2018.01.049
- 12. Garbo C., Locs J., D'Este M., Demazeau G., Mocanu A., Roman C., Horovitz O., and Tomoaia-Cotisel M. Advanced Mg, Zn, Sr, Si multi-substituted hydroxyapatites for bone regeneration. Int. J. Nanomed., 15, 1037–1058 (2020). DOI: 10.2147/IJN.S226630
- 13. Mourino V., Cattalini J. P., and Boccaccini A. R. Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their biological applications and strategies for new developments. J. Roy. Soc. Interface, 9 (68), 401–419 (2012). DOI: 10.1098/rsif.2011.0611
- 14. Li P., Jia Z., Wang Q., Tang P., Wang M., Wang K., Fang J., Zhao C., Ren F., Ge X., and Lu X. Resilient and flexible chitosan/silk cryogel incorporated with Ag/Sr codoped nanoscale hydroxyapatite for osteoinductivity and antibacterial properties. J. Mater. Chem. B, 6 (45), 7427–7438 (2018). DOI: 10.1039/c8tb01672k
- 15. Laskus A. and Kolmas J. Ionic substitutions in non-apatitic calcium phosphates. Int. J. Mol. Sci., 18 (12), 2542 (2017). DOI: 10.3390/ijms18122542
- 16. Barradas A. M., Yuan H., van Blitterswijk C. A., and Habibovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur. Cells Mater., 21, 407–429 (2011). DOI: 10.22203/ecm.v021a31
- 17. Fellah B. H., Josselin N., Chappard D., and Weiss P., Layrolle P. Inflammatory reaction in rats muscle after implantation of biphasic calcium phosphate micro particles. J. Mater. Sci.: Mater. Med., 18 (2), 287–294 (2007). DOI: 10.1007/s10856-006-0691-8
- 18. Wang J., Liu D., Guo B., Yang X., Chen X., Zhu X., Fan Y., and Zhang X. Role of biphasic calcium phosphate ceramic-mediated secretion of signaling molecules by macrophages in migration and osteoblastic differentiation of MSCs. Acta Biomater., 51, 447–460 (2017). DOI: 10.1016/j.actbio.2017.01.059
- 19. Giancotti F. G. and Ruoslahti E. Integrin signaling. Science (N.Y.), 285 (5430), 1028–1032 (1999). DOI: 10.1126/science.285.5430.1028
- 20. Chen X., Wang J., Chen Y., Cai H., Yang X., Zhu X., Fan Y., and Zhang X. Roles of calcium phosphate-mediated integrin expression and MAPK signaling pathways in the osteoblastic differentiation of mesenchymal stem cells. J. Mater. Chem. B, 4 (13), 2280–2289 (2016). DOI: 10.1021/acsbiomaterials.7b00232
- 21. Shekaran A. and Garcia A. J. Extracellular matrix‐mimetic adhesive biomaterials for bone repair. J. Biomed. Mater. Res. Part A, 96 (1), 261–272 (2011). DOI: 10.1002/jbm.a.32979
- 22. Hu W. J., Eaton J. W., Ugarova T. P., and Tang L. Molecular basis of biomaterial-mediated foreign body reactions. Blood, 98 (4), 1231–1238 (2001). DOI: 10.1182/blood.v98.4.1231
- 23. Brodbeck W. G., Colton E., and Anderson J. M. Effects of adsorbed heat labile serum proteins and fibrinogen on adhesion and apoptosis of monocytes/macrophages on biomaterials. J. Mater. Sci.: Mater. Med., 14 (8), 671–675 (2003). DOI: 10.1023/a:1024951330265
- 24. Jenney C. R. and Anderson J. M. Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J. Biomed. Mater. Res., 49 (4), 435–447 (2000). DOI: 10.1002/(sici)1097-4636(20000315)49:43.0.co;2-y
- 25. Olszak I. T., Poznansky M. C., Evans R. H., Olson D., Kos C., Pollak M. R., Brown E. M., and Scadden D. T. Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo. J. Clin. Invest., 105 (9), 1299–1305 (2000). DOI: 10.1172/JCI9799
- 26. De Bruijn J. D., Shankar K., Yuan H., and Habibovic P. Osteoinduction and its evaluation. In: Bioceramics and their clinical applications, Ed. by T. Kokubo (Woodhead Publ., Cambridge, 2008), pp. 199–219 DOI: 10.1201/9781439832530
- 27. McNally A. K. and Anderson J. M. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am. J. Pathol., 147 (5), 1487–1499 (1995).
- 28. Kanatani M., Sugimoto T., Fukase M., and Fujita T. Effect of elevated extracellular calcium on the proliferation of osteoblastic MC3T3-E1 cells: its direct and indirect effects via monocytes. Biochem. Biophys. Res. Commun., 181 (3), 1425–1430 (1991). DOI: 10.1016/0006-291x(91)92098-5
- 29. Terkawi M. A., Matsumae G., Shimizu T., Takahashi D., Kadoya K., and Iwasaki N. Interplay between inflammation and pathological bone resorption: insights into recent mechanisms and pathways in related diseases for future perspectives. Int. J. Mol. Sci., 23 (3), 1786 (2022). DOI: 10.3390/ijms23031786
- 30. Lomovskaya Y. V., Kobyakova M. I., Senotov A. S., Fadeeva I. S., Lomovsky A. I., Krasnov K. S., and Fadeev R. S. Myeloid differentiation increases resistance of leukemic cells to TRAIL-induced death by reducing the expression of DR4 and DR5 receptors. Biochemistry (Moscow), Suppl. Ser. A: Membrane and Cell Biology, 17 (1), 43–57 (2023). DOI: 10.1134/S1990747822060101
- 31. Lomovskaya Y. V., Kobyakova M. I., Senotov A. S., Lomovsky A. I., Minaychev V. V., Fadeeva I. S., Shtatnova D. Y., Krasnov K. S., Zvyagina A. I., Akatov V. S., and Fadeev R. S. Macrophage-like THP-1 cells derived from high-density cell culture are resistant to TRAIL-induced cell death via down-regulation of death-receptors DR4 and DR5. Biomolecules, 12 (2), 150 (2022). DOI: 10.3390/ijms23147881
- 32. Sabido O., Figarol A., Klein J. P., Bin V., Forest V., Pourchez J., Fubini B., Cottier M., Tomatis M., and Boudard D. Quantitative flow cytometric evaluation of oxidative stress and mitochondrial impairment in RAW 264.7 macrophages after exposure to pristine, acid functionalized, or annealed carbon nanotubes. Nanomaterials (Switzerland), 10 (2), 319 (2020). DOI: 10.3390/nano10020319
- 33. Antonaci S., Tortorella C., Polignano A., Ottolenghi A., Jirillo E., and Bonomo L. Modulating effects on CD25 and CD71 antigen expression by lectin-stimulated T lymphocytes in the elderly. Immunopharmacol. Immunotoxicol., 13 (1–2), 87–100 (1991). DOI: 10.3109/08923979109019693
- 34. Schroeder H. A., Tipton I. H., and Nason A. P. Trace metals in man: Strontium and barium. J. Chronic Dis., 25 (9), 491–517 (1972). DOI: 10.1016/00219681(72)90150-6
- 35. Peana M., Medici S., Dadar M., Zoroddu M. A., Pelucelli A., Chasapis C. T., and Bjorklund G. Environmental barium: Potential exposure and health-hazards. Archives Toxicol., 95 (8), 2605–2612 (2021). DOI: 10.1007/s00204-021-03049-5
- 36. Fadeeva I. S., Teterina A. Y., Minaychev V. V., Senotov A. S., Smirnov I. V., Fadeev R. S., Smirnova P. V., Menukhov V. O., Lomovskaya Y. V., Akatov V. S., Barinov S. M., and Komlev V. S. Biomimetic remineralized three-dimensional collagen bone matrices with an enhanced osteostimulating effect. Biomimetics (Switzerland), 8 (1), 91 (2023). DOI: 10.3390/biomimetics8010091
- 37. Teterina A. Y., Minaychev V. V., Smirnova P. V., Kobiakova M. I., Smirnov I. V., Fadeev R. S., Egorov A. A., Ashmarin A. A., Pyatina K. V., Senotov A. S., Fadeeva I. S., and Komlev V. S. Injectable hydrated calcium phosphate bone-like paste: Synthesis, in vitro, and in vivo biocompatibility assessment. Technologies, 11 (3), 77 (2023). DOI: 10.3390/technologies11030077
- 38. Minaychev V. V., Teterina A. Y., Smirnova P. V., Menshih K. A., Senotov A. S., Kobyakova M. I., Smirnov I. V., Pyatina K. V., Krasnov K. S., Fadeev R. S., Komlev V. S., and Fadeeva I. S. Composite remineralization of bonecollagen matrices by low-temperature ceramics and serum albumin: A new approach to the creation of highly effective osteoplastic materials. J. Function. Biomater., 15 (2), 27 (2024). DOI: 10.3390/jfb15020027
- 39. Sowden E. M. and Stitch S. R. Trace elements in human tissue. 2. Estimation of the concentrations of stable strontium and barium in human bone. Biochem. J., 67 (1), 104–109 (1957). DOI: 10.1042/bj0670104
- 40. Panahifar A., Swanston T. M., Jake Pushie M., Belev G., Chapman D., Weber L., and Cooper D. M. Three-dimensional labeling of newly formed bone using synchrotron radiation barium K-edge subtraction imaging. Physics Med. Biol., 61 (13), 5077–5088 (2016). DOI: 10.1042/bj0670104
- 41. Panahifar A., Chapman L. D., Weber L., Samadi N., and Cooper D. M. L. Biodistribution of strontium and barium in the developing and mature skeleton of rats. J. Bone Mineral Metab., 37 (3), 385–398 (2019). DOI: 10.1007/s00774-018-0936-x
- 42. Foster A. D. The impact of bipedal mechanical loading history on longitudinal long bone growth. PloS One, 14 (2), 0211692 (2019). DOI: 10.1371/journal.pone.0211692