RAS BiologyБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

Simplified Model of Skeletal Muscle Contraction Dynamics

PII
S0006302925020155-1
DOI
10.31857/S0006302925020155
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 2
Pages
359-373
Abstract
The skeletal muscle contraction model as a complex of active motor units (sarcomeres) is discussed. The sarcomere model takes into account that forces are generated by myosin bridges interacting with actin filaments in muscle myofibrils. The input of the model is the rate of calcium ion influx into muscle cells, which is assumed to be proportional to the motor neurons potential. The description of the muscle force as a whole uses averaging over an ensemble of motor units. The parameters of the model are adapted to describe contraction of a skeletal muscle sarcomere. The transition from contraction of a single sarcomere to slow contraction of the whole muscle is constructed using motion separation methods. The model of “slow” contraction of a single muscle fiber excited by a single nerve impulse has no independent value because the characteristic time of change of the impulse potential is short. Nevertheless, for description of tetanic muscle contraction, when the change in the total action on the muscle is smooth enough, it seems acceptable to use such an approximate model. Approximate numerical estimates of the error of the constructed model for a simplified example are given.
Keywords
скелетная мышцы мышечное сокращение модель мышцы
Date of publication
24.10.2025
Year of publication
2025
Number of purchasers
0
Views
21

References

  1. 1. Hill A. V. The heat of shortening and dynamics constants of muscles. Proc. Roy. Soc. Lond., 126 (843), 136–195, 1938.
  2. 2. Huxley A. Muscle structure and theories of contraction. Progr. Biophys. Biophys. Chem., 7, 255–318, 1957.
  3. 3. Дещеревский В. И. Математические модели мышечного сокращения (Наука, М., 1977).
  4. 4. Черноус Д. А. и Шилько С. В. Актуаторная функция мышцы: модель генерации силы при изометрическом возбуждении. Рос. журн. биомеханики, 12 (1), 13–21, 2008.
  5. 5. Фельдман А. Центральные и рефлекторные механизмы управления движениями (Наука, М., 1979).
  6. 6. Latash M. and Zatsiorsky V. Biomechanics and motor control: defining central concepts (Acad. Press, San Diego, 2015). DOI: 10.1016/C2013-0- 18342-0
  7. 7. Зациорский В. и Прилуцкий Б. Нахождение усилий мышц человека по заданному движению. Совр. проблемы биомеханики, № 7, 81–123 (1993).
  8. 8. Peshin S., Karakulova J., and Kuchumov A. A coupled electro-mechanical approach for early diagnostic of carpal tunnel syndrome. MedRxiv (2023), DOI: 10.1101/2023.06.16.23291511
  9. 9. Кубасова Н. А. и Цатурян А. К. Молекулярный механизм работы актин-миозинового мотора в мышце. Успехи биол. химии, 51, 233–282 (2011).
  10. 10. Syomin F. A. and Tsaturyan A. K. A simple model of cardiac muscle for multiscale simulation: Passive mechanics, crossbridge kinetics and calcium regulation. J. Theor. Biol., 420, 105–116 (2017).
  11. 11. Syomin F. A., Zberia M. V., and Tsaturyan A. K. Multiscale simulation of the effects of atrioventricular block and valve diseases on heart performance. Int. J. Numer. Methods Biomed. Engineer., 35 (7), e3216 (2019). DOI: 10.1002/cnm.3216
  12. 12. Konhilas J., Irving T., and de Tombe P. Length-dependent activation in three striated muscle types of the rat. J. Physiol., 544, 225–236 (2002).
  13. 13. Fryer M. and Neering I. Actions of caffeine on fast- and slow-twitch muscles of the rat. J. Physiol., 416 (1), 435–454 (1989).
  14. 14. Новожилов И. Фракционный анализ (МГУ, М., 1995).
  15. 15. Влахова А. Математические модели движения колесных аппаратов (АНО ≪Ижевский институт компьютерных исследований≫, Ижевск, 2014).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library