- PII
- S30345278S0006302925030012-1
- DOI
- 10.7868/S3034527825030012
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 3
- Pages
- 421-429
- Abstract
- The morphological and structural features of coaggregates of two muscle proteins of the sarcomeric cytoskeleton (titin and myosin-binding protein C) were studied using atomic force microscopy, FTIR spectroscopy, fluorimetry using the dye thioflavin T and X-ray diffraction. It was found that, depending on the ionic strength of the solution, coaggregation of these proteins occurs with the formation of structures with different morphologies. The data obtained in vitro expand the understanding of the peculiarities of aggregation of sarcomeric muscle proteins and are important for a better understanding of their interaction in sarcomeres in vivo.
- Keywords
- мультидоменные мышечные белки миозин-связывающий белок С титин агрегация атомно-силовая микроскопия
- Date of publication
- 07.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 47
References
- 1. Schreiber G., Haran G., and Zhou H. X. Fundamental aspects of protein-protein association kinetics. Chem. Rev., 109 (3), 839–860 (2009). DOI: 10.1021/cr800373w
- 2. Thabault L., Liberelle M., and Frédérick R. Targeting protein self-association in drug design. Drug Discov. Today, 26 (5), 1148–1163 (2021). DOI: 10.1016/j.drudis.2021.01.028
- 3. Luo X., Wang J., Ju Q., Li T., and Bi X. Molecular mechanisms and potential interventions during aging-associated sarcopenia. Mech. Ageing Dev., 223, 112020 (2025). DOI: 10.1016/j.mad.2024.112020
- 4. Fielding R. A. Sarcopenia: An emerging syndrome of advancing age. Calcif. Tissue Int., 114 (1), 1–2 (2024). DOI: 10.1007/s00223-023-01175-z
- 5. Granzier H. L. and Labeit S. Titin and its associated proteins: the third myofilament system of the sarcomere. Adv. Prot. Chem., 71, 89–119 (2005). DOI: 10.1016/S0065-3233(04)71003-7
- 6. LeWinter M. M. and Granzier H. L. Titin is a major human disease gene. Circulation, 127 (8), 938–944 (2013). DOI: 10.1161/CIRCULATIONAHA.112.139717
- 7. Chung C. S., Hutchinson K. R., Methawasin M., Saripalli C., Smith J. E. 3rd, Hidalgo C. G., Luo X., Labelt S., Guo C., and Granzier H. L. Shortening of the elastic tandem immunoglobulin segment of titin leads to diastolic dysfunction. Circulation, 128 (1), 19–28 (2013). DOI: 10.1161/CIRCULATIONAHA.112.001268
- 8. Tonino P., Kiss B., Gohlke J., Smith J. E. 3rd, and Granzier H. Fine mapping titin’s C-zone: Matching cardiac myosin-binding protein C stripes with titin’s super-repeats. J. Mol. Cell Cardiol., 133, 47–56 (2019). DOI: 10.1016/j.ijmcc.2019.05.026
- 9. Herman D. S., Lam L., Taylor M. R., Wang L., Teekakirikul P., Christodoulou D., Conner L., DePalma S. R., McDonough B., Sparks E., Teodoroscu D. L., Cirino A. L., Banner N. R., Pennell D. J., Graw S., Merlo M., Di Lenarda A., Sinagra G., Bos J. M., Ackerman M. J., Mitchell R. N., Murty C. E., Lakdawala N. K., Ho C. Y., Barton P. J., Cook S. A., Mestroni L., Seidman J. G., and Seidman C. E. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med., 366 (7), 619–628 (2012). DOI: 10.1056/NEJM0a1110186
- 10. Begay R. L., Graw S., Sinagra G., Merlo M., Slavov D., Gowan K., Jones K. L., Barbati G., Spezzacatene A., Brun F., Di Lenarda A., Smith J. E., Granzier H. L., Mestroni L., and Taylor M. Familial cardiomyopathy registry. Role of titin missense variants in dilated cardiomyopathy. J. Am. Heart Assoc., 4 (11), e002645 (2015). DOI: 10.1161/JAHA.115.002645
- 11. Roberts A. M., Ware J. S., Herman D. S., Schafer S., Baksi J., Bick A. G., Buchan R. J., Walsh R., John S., Wilkinson S., Mazzarotto F., Felkin L. E., Gong S., MacArthur J. A., Cunningham T., Flaminski, Gabriel S. B., Altshuler D. M., Macdonald P. S., Heimig M., Keogh A. M., Hayward C. S., Banner N. R., Pennell D. J., O’Regan D. P., San T. R., de Marvao A., Dawes T. J., Gulati A., Birks E. J., Yacoub M. H., Radke M., Gotthardt M., Wilson J. G., O’Donnell C. J., Prasad S. K., Barton P. J., Fatkin D., Hubner N., Seidman J. G., Seidman C. E., and Cook S. A. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci. Transl. Med., 7 (270), 270426 (2015). DOI: 10.1126/scitranslmed.3010134
- 12. Bobylev A. G., Galzitskaya O. V., Fadeev R. S., Bobyleva L. G., Yurshenas D. A., Molochkov N. V., Dovldchenko N. V., Selivanova O. M., Penkov N. V., Podlubnaya Z. A., and Vikhiyantsev I. M. Smooth muscle titin forms in vitro amyloid aggregates. Biosci. Rep., 36 (3), e00334 (2016). DOI: 10.1042/B5R20160066
- 13. Yakupova E. I., Vikhiyantsev I. M., Bobyleva L. G., Penkov N. V., Timchenko A. A., Timchenko M. A., Enin G. A., Khurzan S. S., Selivanova O. M., and Bobylev A. G. Different amyloid aggregation of smooth muscles titin in vitro. J. Biomol. Struct. Dyn., 36 (9), 2237–2248 (2018). DOI: 10.1080/07391102.2017.1348988
- 14. Bobyleva L. G., Shumeyko S. A., Yakupova E. I., Surin A. K., Galzitskaya O. V., Kihara H., Timchenko A. A., Timchenko M. A., Penkov N. V., Nikulin A. D., Suvorina M. Y., Molochkov N. V., Lobanov M. Y., Fadeev R. S., Vikhiyantsev I. M., and Bobylev A. G. Myosin binding protein-C forms amyloid-like aggregates in vitro. Int. J. Mol. Sci., 22, 731 (2021). DOI: 10.3390/ijms22020731
- 15. Bobylev A. G., Yakupova E. I., Bobyleva L. G., Molochkov N. V., Timchenko A. A., Timchenko M. A., Kihara H., Nikulin A. D., Gabdulkhakov A. G., Mehrik T. N., Penkov N. V., Lobanov M. Y., Kazakov A. S., Kellermayer M., Martonfahl Z., Galzitskaya O. V., and Vikhiyantsev I. M. Nonspecific amyloid aggregation of chicken smooth-muscle titin: In vitro investigations. Int. J. Mol. Sci., 24 (2), 1056 (2023). DOI: 10.3390/ijms24021056
- 16. Bobyleva L. G., Uryupina T. A., Penkov N. V., Timchenko M. A., Ulanova A. D., Gabdulkhakov A. G., Vikhiyantsev I. M., and Bobylev A. G. The structural features of skeletal muscle titin aggregates. Mol. Biol., 58 (2), 319–332 (2024). DOI: 10.1134/s0026893324020043
- 17. Salcan S., Bongardi S., Monteiro Barbosa D., Efimov I. R., Rassaf T., Kruger M., and Kotter S. Elastic titin properties and protein quality control in the aging heart. Biochim. Biophys. Acta Mol. Cell. Res., 1867 (3), 118532 (2020). DOI: 10.1016/j.bbamer.2019.118532
- 18. Hughes D. C., Wallace M. A., and Baar K. Effects of aging, exercise, and disease on force transfer in skeletal muscle. Am. J. Physiol. Endocrinol. Metab., 309 (1), E1–E10 (2015). DOI: 10.1152/ajpendo.00095.2015
- 19. Hessel A. L., Lindstedt S. L., and Nishikawa K. C. Physiological mechanisms of eccentric contraction and its applications: A role for the giant titin protein. Front. Physiol., 8, 70 (2017). DOI: 10.3389/fphys.2017.00070
- 20. Soteriou A., Gamage M., and Trinick J. A survey of interactions made by the giant protein titin. J. Cell. Sci., 104 (Pt 1), 119–123 (1993). DOI: 10.1242/jcs.104.1.119
- 21. Offer G., Moos C., and Starr R. A new protein of the thick filaments of vertebrate skeletal myofibrils. Extractions, purification and characterization. J. Mol. Biol., 74 (4), 653–676 (1973). DOI: 10.1016/0022-2836(73)90055-7
- 22. Trinick J., Knight P., and Whiting A. Purification and properties of native titin. J. Mol. Biol., 180 (2), 331–356 (1984). DOI: 10.1016/s0022-2836(84)80007-8
- 23. Starr R. and Offer G. Preparation of C-protein, H-protein, X-protein, and phosphofructokinase. Methods Enzymol., 85 (Pt 1), 130–138 (1982). DOI: 10.1016/0076-6879(82)85016-7
- 24. Venyaminov S. and Prendergast F. G. Water (HO and DO) molar absorptivity in the 1000–4000 cm range and quantitative infrared spectroscopy of aqueous solutions. Anal. Biochem., 248 (2), 234–245 (1997). DOI: 10.1006/abio.1997.2136
- 25. Yang H, Yang S, Kong J, Dong A, and Yu S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat. Protoc., 10 (3), 382–396 (2015). DOI: 10.1038/nprot.2015.024
- 26. Makin O. S. and Serpell L. C. Structures for amyloid fibrils. FEBS J, 272 (23), 5950–5961 (2005). DOI: 10.1111/j.1742-4658.2005.05025.x
- 27. Jahn T. R, Makin O. S, Morris K. L., Marshall K. E., Tian P, Sikorski P, and Serpell L. C. The common architecture of cross-beta amyloid. J. Mol. Biol., 395 (4), 717–727 (2010). DOI: 10.1016/j.jmb.2009.09.039
- 28. Zandomeneghi G, Krebs M. R, McCammon M. G., and Fandrich M. FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Prot. Sci., 13 (12), 3314–3321 (2004). DOI: 10.1110/ps.041024904
- 29. Yakupova E. I., Bobyleva L. G., Shumeyko S. A., Vikhlyantsev I. M., and Bobylev A. G. Amyloids: The history of toxicity and functionality. Biology (Basel), 10 (5), 394 (2021). DOI: 10.3390/biology10050394