RAS BiologyБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

Effect of Thr-Ser-Lys-Tyr Peptide on Actin Polymerization in vitro

PII
S30345278S0006302925040027-1
DOI
10.7868/S3034527825040027
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
646-651
Abstract
The effect of the peptide Thr-Ser-Lys-Tyr isolated from the brain of the obligate hibernating long-tailed ground squirrel Urocitellus undulatus (formerly Citellus undulatus, Spermophilus undulatus) on the polymerization/depolymerization of actin in vitro was studied by electron microscopy. Upon incubation of the peptide with globular (monomeric) actin at concentrations of 0.1 mg/ml (in a ratio of 1 : 1), the formation of single filaments of actin was observed. When the peptide was added to the formed actin filaments, no effects were observed, in particular, actin depolymerization. The possible involvement of the peptide in the polymerization of actin in vivo and a possible contribution to the restoration of the functional activity of the central nervous system after the hibernating animal leaves the state of hypothermia are discussed.
Keywords
актин пептид Thr-Ser-Lys-Tyr электронная микроскопия гибернация память
Date of publication
15.12.2025
Year of publication
2025
Number of purchasers
0
Views
37

References

  1. 1. Зиганшин Р. Х., Свиряев В. И., Васьковский Б. В., Михалева И. И., Иванов В. Т., Кокоз Ю. М., Алексеев А. Е., Корыстова А. Ф., Сухова Г. С., Емельянова Т. Г. и Усенко А. Б. Биологически активные пептиды, выделенные из мозга зимоспящих сусликов. Биоорганич. химия, 20 (8–9), 899–918 (1994).
  2. 2. Kramarova L. I., Ziganshin R. H., Kokoz Y. M., and Bronnikov G. E. The search for and investigation of peptide regulators of hibernation in mammals. In: Recent Research Developments in Endocrinology (Transworld Research Network, Trivandrum, India, 2004), vol. 4, pt. 2, p. 227.
  3. 3. Kramarova L. I., Ziganschin R. H., Timoshenko M. A., Mikhaleva I. I., and Karnaukhov V. N. The peptide ThrSer-Lys-Tyr isolated from the brain of hibernating ground squirrels (Spermophilus undulatus) decreases the heart rate of chicken embryos. In: Adaptations to the cold, Ed. by F. Geiser, A.J. Hulbert, S.C. Nicol (University of New England Press, Armidale, 1996).
  4. 4. Ignat’ev D. A., Mikhaleva I. I., Sosulina L. Yu., Zakaryan A. A., Sukhova G. S., and Ziganshin R. H. Peptide TSKY decelerates outcome of the ground squirrel from hibernation. J. Evol. Biochem. Physiol., 37 (3), 266–272 (2001).
  5. 5. Z enchenko K. I., Kokoz Y. M., Ivanov V. T., Ziganshin R. H., and Vinogradova O. S. State-dependent effects of some neuropeptides and neurotransmitters on neuronal activity of the medial septal area in brain slices of the ground squirrel, Citellus undulates. Neuroscience, 96 (4), 791–805 (2000).
  6. 6. Mikhailova G. Z., Bezgina E. N., Kashirskaya N. N., Ivlicheva N. A., Ziganshin R. H., and Kramarova L. I. The neuroprotective effect of the Thr–Ser–Lys–Tyr peptide in a goldfish mauthner cell model in vivo. Biophysics, 63 (2), 201–206 (2018). DOI: 10.1134/S0006350918020173
  7. 7. Kramarova L. I., Ivlicheva N. A., Ziganshin R. H., Andreev A. A., and Gakhova E. N. The hibernation-related peptide TSKY acts as a neuroprotector in cultured pond snail neurons. In: Living in a Seasonal World: Thermoregulatory and Metabolic Adaptations. Ed. by R. Bieber and A. Millesi (Springer-Verlag GmbH, Heidelberg, Germany, 2012), сhapt. 18, pp. 201–210.
  8. 8. Cingolani L. A. and Goda Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci., 9 (5), 344–356 (2008).DOI: 10.1038/nrn2373. Erratum in: Nat. Rev. Neurosci., 9 (6), 494 (2008).
  9. 9. Rex C. S., Chen L. Y., Sharma A., Liu J., Babayan A. H., Gall C. M., and Lynch G. Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J. Cell Biol., 186 (1), 85–97 (2009). DOI: 10.1083/jcb.200901084
  10. 10. Choquet D. and Triller A. The dynamic synapse. Neuron, 80 (3), 691–703 (2013).DOI: 10.1016/j.neuron.2013.10.013
  11. 11. Кудряшова И. В. Молекулярные основы дестабилизации синапсов как фактор структурной пластичности. Нейрохимия, 36 (1), 3–13 (2019).
  12. 12. Luo L. Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu. Rev. Cell Dev. Biol., 18, 601–635 (2002).DOI: 10.1146/annurev.cellbio.18.031802.150501
  13. 13. Baltaci S. B., Mogulkoc R., and Baltaci A. K. Molecular mechanisms of early and late LTP. Neurochem. Res., 44 (2), 281–296 (2019).DOI: 10.1007/s11064-018-2695-4
  14. 14. Bosch M., Castro J., Saneyoshi T., Matsuno H., Sur M., and Hayashi Y. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron, 82 (2), 444–459 (2014).
  15. 15. Тирас Н. Р., Удальцов С. Н., Михайлова Г. З. и Мошков Д. А. Выявление с помощью электронной микроскопии в яде скорпиона пептидов, взаимодействующих с актином. Биологич. мембраны, 20 (1), 72–76 (2003).
  16. 16. Захарова Н. М. Некоторые особенности разогрева гибернирующих сусликов Spermophilus undulatus при вызванном пробуждении. Фундаментальные исследования, 6, 1401–1405 (2014).
  17. 17. Spudich J. A. and Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem., 246 (15), 4866–4871 (1971).
  18. 18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227 (5259), 680–685 (1970). DOI: 10.1038/227680a0
  19. 19. Rees M. K. and Young M. Studies on the isolation and molecular properties of homogeneous globular actin. Evidence for a single polypeptide chain structure. J. Biol. Chem., 242 (19), 4449–4458 (1967).
  20. 20. Sept D. and McCammon J. A. Thermodynamics and kinetics of actin filament nucleation. Biophys. J., 81, 667– 674 (2001).
  21. 21. Bobylev A. G., Galzitskaya O. V., Fadeev R. S., Bobyleva L. G., Yurshenas D. A., Molochkov N. V., Dovidchenko N. V., Selivanova O. M., Penkov N. V., Podlubnaya Z. A., and Vikhlyantsev I. M. Smooth muscle titin forms in vitro amyloid aggregates. Biosci. Rep., 36 (3), e00334 (2016). DOI: 10.1042/BSR20160066
  22. 22. Lin Y. C. and Koleske A. J. Mechanisms of synapse and dendrite maintenance and their disruption in psychiatric and neurodegenerative disorders. Annu. Rev. Neurosci., 33, 349–378 (2010).DOI: 10.1146/annurev-neuro-060909-153204
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library