RAS BiologyБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

Investigation of the Interaction of Charged Nanoparticles with the Cell Membrane of Erythrocytes

PII
S30345278S0006302925040045-1
DOI
10.7868/S3034527825040045
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
664-669
Abstract
Aerosols made of highly charged nanoparticles of non-volatile substances are of interest for the development of new highly effective methods of targeted drug delivery. However, for safe use, it is necessary to study their possible damaging effect on cell membranes. Human erythrocytes were selected as a model system. The experiments were carried out under conditions of partial dehydration of cells with exposure of a part of the surface of red blood cells to air to ensure contact of the sprayed particles with the cell membrane. It was found that, while highly charged nanoaerosolic particles during direct electron spraying are capable of disrupting the structure of the lipid monolayer, they do not cause damage to the cell membrane of erythrocytes. Thus, the results of the work can be used in the development of an electro-spraying method for the delivery of medicinal drugs to wound surfaces, the olfactory bulb, etc. The developed devices can also be used in studies of the interaction of nanoaerosols of various substances with the cell membrane.
Keywords
метод электрораспыления наноаэрозольные частицы мембрана эритроцитов
Date of publication
15.12.2025
Year of publication
2025
Number of purchasers
0
Views
34

References

  1. 1. Rosiere R., Amighi K., and Wauthoz N. Nanomedicinebased inhalation treatments for lung cancer. In: Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer, Ed. by P. Kesharvani (Acad. Press, London, New York, San Francisco, 2019), pp. 249–268.DOI: 10.1016/B978-0-12-815720-6.00010-1
  2. 2. Neary M. T., Mulder L. M., Kowalski P. S., MacLoughlin R., Crean A. M., and Ryan K. B. Nebulised delivery of RNA formulations to the lungs: From aerosol to cytosol. J. Control. Release, 366, 812–833 (2024).DOI: 10.1016/j.jconrel.2023.12.012
  3. 3. Jiang A. Y., Witten J., Raji I., Eweje F., MacIsaac C., Meng S., Oladimeji F. A., Hu Y., Manan R. S., Langer R., and Anderson D. G. Combinatorial development of nebulized mRNA delivery formulations for the lungs. Nat. Nanotechnol., 19 (3), 364–375 (2024).DOI: 10.1038/s41565
  4. 4. Lee W.-H., Loo C.-Y., Traini D., and Young P. M. Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges. As. J. Pharm. Sci., 10 (6), 481–489 (2015). DOI: 10.1016/j.ajps.2015.08.009
  5. 5. Hong S.-H., Park S.-J., Lee S., Cho C. S., and Cho M.-H. Aerosol gene delivery using viral vectors and cationic carriers for in vivo lung cancer therapy. Expert Opin. Drug Deliv., 12 (6), 977–991 (2014).DOI: 10.1517/17425247.2015.986454
  6. 6. Onischuk A. A., Tolstikova T. G., An'kov S. V., Baklanov A. M., Valiulin S. V., Khvostov M. V., Sorokina I. V., Dultseva G. G., and Zhukova N. A. Ibuprofen, indomethacin and diclofenac sodium nanoaerosol: generation, inhalation delivery and biological effects in mice and rats. J. Aer. Sci., 100, 164–177 (2016).DOI: 10.1016/j.jaerosci.2016.05.005
  7. 7. Wang Z., Xiong G., Tsang W. C., Schätzlein A. G., and Uchegbu I. F. Nose-to-brain delivery. J. Pharmacol. Exp. Ther., 370 (3), 593–601 (2019).DOI: 10.1124/jpet.119.258152
  8. 8. Propst C. N., Nwabueze A. O., Kanev I. L., Pepin R. E., Gutting B. W., Morozov V. N., and van Hoek M. L. Nanoaerosols reduce required effective dose of liposomal levofloxacin against pulmonary murine Francisella tularensis subsp. novicida infection. J. Nanobiotechn., 14 (29), 1–10 (2016). DOI:10.1186/s12951-016-0182-0
  9. 9. Morozov V. N., Kanev I. L., Mikheev A. Y., Shlyapnikova E. A., Shlyapnikov Y. M., Nikitin M. P., Nikitin P. I., Nwabueze A. O., and van Hoek M. L. Generation and delivery of nanoaerosols from biological and biologically active substances. J. Aerosol Sci., 69, 48–61 (2014). DOI: 10.1016/j.jaerosci.2013.12.003
  10. 10. Lee W-H., Loo C-Y., Young P. M., Traini D., Mason R. S., and Rohanizadeh R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin. Drug Deliv., 11 (8), 1183–1204 (2014).DOI: 10.1517/17425247.2014.916686
  11. 11. Morozov V. N., Shlyapnikov Y. M., Kanev I. L., and Shlyapnikova E. A. Ballistic penetration of highly charged nanoaerosol particles through a lipid monolayer. Langmuir, 33 (32), 7829–7837 (2017).DOI: 10.1021/acs.langmuir.7b00782
  12. 12. McDonagh P. F. and Williams S. K. The preparation and use of fluorescent-protein conjugates for microvascular research. Microvasc. Res., 27 (1), 14–27 (1984).DOI: 10.1016/0026-2862(84)90038-4
  13. 13. Morozov V. N. and Morozova T. Y. Electrophoresis-assisted active immunoassay. Anal. Chem., 75 (24), 6813– 6819 (2003). DOI: 10.1021/ac034733o
  14. 14. Морозов В. Н. и Канев И. Л. Устройство контроля заряда биологически активных наноаэрозолей. Патент РФ № 2656762 от 25.08.2017.
  15. 15. Morozov V. N. Electrospray deposition of biomolecules. Adv. Biochem. Eng. Biotechnol., 119, 115–162 (2010).DOI: 10.1007/10_2008_44
  16. 16. Mohandas N. and Gallagher P. G. Red cell membrane: past, present, and future. Blood, 112 (10), 3939–3948 (2008). DOI: 10.1182/blood-2008-07-161166
  17. 17. Kanev I. L., Mikheev A. Y., Shlyapnikov Y. M., Shlyapnikova E. A., and Morozov V. N. Are reactive species generated in electrospray at low current? Anal. Chem., 86 (3), 1511–1517 (2014). DOI: 10.1021/ac403129f
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library