RAS BiologyБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

Genotoxicity of Nitroprusside As a Nitrosonium Cation Donor

PII
S30345278S0006302925040145-1
DOI
10.7868/S3034527825040145
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
749-756
Abstract
The genotoxicity of sodium nitroprusside on human MCF-7 mammary gland adenocarcinoma cells was studied using the neutral comet method and the contribution of the nitrosonium ion (NO+) to the genotoxicity of sodium nitroprusside was determined. Genotoxicity was assessed by the yield of double-stranded DNA breaks after incubation of a cell culture with the agent for 1.5 hours. The genotoxicity of NO+ in sodium nitroprusside was determined after the procedure of reducing sodium nitroprusside using sodium dithionite, which converts nitroprusside from a NO+ donor to a NO only donor. It has been shown that sodium nitroprusside induces double-stranded DNA breaks in MCF-7 cells after 1.5 hours. This ability of nitroprusside does not depend on the stage of the cell cycle: the proportions of damaged cells in the G0/G1 and G2/M+S stages are 29 ± 7% and 27 ± 6%, respectively. As a result of 90-minute incubation with 100 μM of sodium nitroprusside, the proportion of cells severely damaged in the form of double-stranded DNA breaks is 25−30%, which is close to the proportion of non-viable cells according to the results of the MTT test at 24 h and 48 h of incubation (22 ± 4%). Sodium dithionite, by removing the toxic effect of NO+, protected MCF7 cells from the genotoxic effects of nitroprusside, which indicates the involvement of NO+ in the formation of double-strand breaks.
Keywords
нитропруссид катион нитрозония одно- и двунитевые разрывы ДНК оксид азота генотоксичность динитрозильные комплексы железа
Date of publication
16.12.2025
Year of publication
2025
Number of purchasers
0
Views
50

References

  1. 1. Ванин А. Ф., Тронов В. А., Трифонова Н. Е., Микоян В. Д. и Ткачев Н. А. Катион нитрозония как компонент нитропруссида, определяющий его цитотоксичность. Биофизика, 70 (1), 1–7 (2025).DOI: 10.31857/S0006302925010142, EDN: LUWCAG
  2. 2. Tronov V. A., Tkachev N. A., Nekrasova E. I., and Vanin A. F. Genoand cytotoxic action of dinitrosyl iron complex with mercaptosuccinate on MCF-7 cells. Cell Tissue Biol., 17 (1), 48–55 (2023).DOI: 10.31857/S0041377122050091
  3. 3. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity. J. Immunol. Methods, 16 (1), 55–63 (1983).
  4. 4. Тронов В. А. и Некрасова Е. И. Повреждение ДНК и белок р53 ограничивают пролиферацию клеток Мюллера в сетчатке мышей в ответ на действие метилнитрозомочевины. Биофизика, 65 (3), 543–551 (2020).
  5. 5. Konca K., Lankoff A., Banasik A., Lisdowska H., Kuszewski T., Gozdz S., Koza Z., and Wojcik A. A cross-platform public domain PC image-analysis program for comet assay. Mutat. Res., 534, 15–20 (2003).
  6. 6. Lin W., Wei X., Xue H., Kelimu M., Tao R., Song Y., and Zhou Z. Study on DNA strand breaks induced by sodium nitroprusside, a nitric oxide donor, in vivo and in vitro. Mutat. Res., 466, 187–195 (2000).
  7. 7. Chandna S. Single-cell gel electrophoresis assay monitors precise kinetics of DNA fragmentation induced during programmed cell death. Cytometry. Part A, 61A, 127–133 (2004). DOI: 10.1002/cyto.a.20071
  8. 8. Wilkins R. C., Kutzner B. C., Truong M., Sanchez-Dardon J., and McLean J. R. N. Analysis of radiation-induced apoptosis in human lymphocytes: Flow cytometry using annexin V and propidium iodide versus the neutral comet assay. Cytometry, 48 (1), 14–19 (2002).
  9. 9. Cain K., Inayat-Hussain S. H., Wolfe J. T., and Cohen G. M. DNA fragmentation into 200–250 and/or 30–50 kilobase pair fragments in rat livernuclei is stimulated by Mg2+ alone and Ca2+/Mg2+ but not by Ca2+ alone. FEBS Lett., 349 (3), 383–391 (1994).
  10. 10. Oberhammer F., Wilson J. W., Dive C., Morris I. D., Hickman J. A., Wakeling A. E., Walker P. R., and Sikorska M. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J., 12 (9), 3679–3684 (1993).
  11. 11. Qi S.-N., Jing Y.-X., Dong G.-X., Chen Y., Yoshida A., and Ueda T. GP7 induces internucleosomal DNA fragmentation in dependent of caspase activation and DNA fragmentation factor in NB4 cells. Oncol. Reports, 18, 273–277 (2007).
  12. 12. Nunez R., Garay N., Villafane C., Bruno A., and Lindgren V. Description of a flowcytometry approach based on SYBR-14 staining for the assessment of DNA content, cell cycle analysis, and sorting of living normal and neoplastic cells. Exp. Mol. Pathol., 76 (1), 29–36 (2004).
  13. 13. Darzynkiewicz Z., Huang X., and Zhao H. Analysis of cellular DNA content by flow cytometry. Curr. Protocols Cytometry, 82, 7.5.1–7.5.20 (2017).
  14. 14. Khan S., Kayahara M., Joashi U., Mazarakis N. D., Sarraf C., Edwards A. D., Hughes M. N., and Mehmet H. Differential induction of apoptosis in Swiss 3T3 cells by nitric oxide and the nitriosonium cation. J. Cell Sci., 110 (Pt 18), 2315–2322 (1997).DOI: 10.1242/jcs.110.18.2315
  15. 15. Ванин А. Ф. и Ткачев Н. А. Динитрозильные комплексы железа с тиол-содержащими лигандами как источники универсальных цитотоксинов – катионов нитрозония. Биофизика, 68, 329–340 (2023).DOI: 10.31857/S0006302923030018
  16. 16. Moinuddin Dixit K., Ahmad S., Shahab U., Habib S., Naim M., Alam K., and Ali A. Human DNA damage by the synergistic action of 4-aminobiphenyl and nitric oxide: An immunochemical study. Environ. Toxicol., 29, 568– 576 (2014). DOI: 10.1002/tox.21782
  17. 17. Tanaka T., Kurose A., Halicka H. D., Huang X., Traganos F., and Darzynkiewicz Z. Nitrogen oxide-releasing aspirin induces histone H2AX phosphorylation, ATM activation and apoptosis preferentially in S-phase cells. Involvement of reactive oxygen species. Cell Cycle, 5 (15), 1669–1674 (2006).
  18. 18. Qua Y. Y., Liu Y. H., Lin C. M., Wang X. P., and ChenT. S. Peroxynitrite dominates sodium nitroprusside-induced apoptosis in human hepatocellular carcinoma cells. Oncotarget, 8 (18), 29833–29845 (2017).
  19. 19. Quan Y. Y., Qin G. Q., Huang H., Liu Y. H., Wang X. P., and Chen T. S. Dominant roles of Fenton reaction in sodium nitroprusside-induced chondrocyte apoptosis. Free Radic. Biol. Med., 94, 135–144 (2016).DOI: 10.1016/freeradbiolmed.2016.02.026
  20. 20. Cardaci S., Filomeni G., Rotilio G., and Ciriolo M. R. Reactive oxygen species mediate p53 activation and apoptosis induced by sodium nitroprusside in SH-SY5Y cells. Mole. Pharmacol., 74, 1234–1245 (2008).DOI: 10.1124/mol.108.048975
  21. 21. Kuhn K. and Martin L. Mechanisms of sodium nitroprusside-induced death in human chondrocytes. Rheumatol. Int., 23, 241–247 (2003).DOI: 10.1007/s00296-003-0299-y
  22. 22. Enari M., Sakahira H., Yokoyama H., Okawa K., Iwamatsu A., and Nagata S. Acaspase-activated DNase that degrade DNA during apoptosis, and its inhibitor ICAD. Nature, 391, 43–50 (1998).
  23. 23. Liu X., Zou H., Slaughter C., and Wang X. DFF, a heterodimeric protein that functions downstream of caspase3 to trigger DNA fragmentation during apoptosis. Cell, 89, 175–184 (1997).
  24. 24. Clemons N. J., McColl K. E. L., and Fitzgerald R. C. Nitric oxide and acid induce double-strand DNA breaks in Barrett’s esophagus carcinogenesis via distinct mechanisms. Gastroenterology, 133, 1198–1209 (2007).DOI: 10.1053/j.gastro.2007.06.061
  25. 25. Bano D., Jochen H. M., and Prehn J. H. M. Apoptosisinducing factor (AIF) in physiology and disease: the tale of arepented natural born killer. Eur. BioMed., 30, 29–37, (2018). DOI: 10.1016/j.ebiom.2018.03.016
  26. 26. Norberg E., Orrenius S., and Zhivotovsky B. Mitochondrial regulation of cell death: Processing of apoptosis-inducing factor (AIF). Biochem. Biophys. Res. Commun., 396, 95–100 (2010). DOI: 10.1016/bbrc.2010.02.163
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library