- PII
- S30345278S0006302925040186-1
- DOI
- 10.7868/S3034527825040186
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 4
- Pages
- 787-793
- Abstract
- Pathological changes in blood vessels in diabetes are determined by oxidative stress. The effect of flavonoids on oxidative stress in blood vessels in diabetes has not been studied. In this work, we investigated the effect of flavanonol dihydroquercetin on blood glucose levels, the activity of angiotensin-converting enzyme, and the formation of reactive oxygen species in the aorta of rats with alloxan-induced diabetes. The activity of the angiotensin converting enzyme in the aortic segments was determined by the hydrolysis of hypuryl-L-histidylL-leucine, and the formation of reactive oxygen species was evaluated by the oxidation of dichlorodihydrofluorescein. It has been shown that dihydroquercetin reduces blood glucose levels, angiotensin-converting enzyme activity, and formation of reactive oxygen species in the aorta of diabetic rats to the values of these parameters in the aorta of control rats. Dihydroquercetin also normalizes the glucose tolerance test in diabetic rats. The effects of dihydroquercetin disappear after stopping its consumption. Thus, dihydroquercetin may be useful for the treatment of diabetes, but its consumption should be continuous.
- Keywords
- аорта активные формы кислорода аллоксан ангиотензин-превращающий фермент диабет дигидрокверцетин
- Date of publication
- 13.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 37
References
- 1. Ostrauskas R. The prevalence of type 1 diabetes mellitus among 15−34-year-aged Lithuanian inhabitants during 1991–2010. Prim. Care Diabetes, 9 (2), 105–111 (2015). DOI: 10.1016/j.pcd.2014.07.009
- 2. Delbin M. A. and Trask A. J. The diabetic vasculature: Physiological mechanisms of dysfunction and influence of aerobic exercise training in animal models. Life Sci, 102 (1), 1–9 (2014). DOI: 10.1016/j.lfs.2014.02.021
- 3. Kayama Y., Raaz U., Jagger A., Adam M., Schellinger I. N., Sakamoto M. M., Suzuki H., Toyama K., Spin J. M., and Tsao P. S. Diabetic cardiovascular disease induced by oxidative stress. Int. J. Mol. Sci., 16 (10), 25234–25263 (2015). DOI: 10.3390/ijms161025234
- 4. Dandona P., Thusu K., Cook S., Snyder B., Makowski J., Armstrong D., and Nicotera T. Oxidative damage to DNA in diabetes mellitus. Lancet, 347 (8999), 444–445 (1996).
- 5. Coskun O., Kanter M., Korkmaz A., and Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol. Res., 51 (2), 117–123 (2005).DOI: 10.1016/j.phrs.2004.06.002
- 6. Mahesh T., and Menon V.P. Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytotherapy Res, 18 (2), 123–127 (2004). DOI: 10.1002/ptr.1374
- 7. Vessal M., Hemmati M., and Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Compar. Biochem. Physiolog. Part C, 135 (3), 357–364 (2003). DOI: 10.1016/S1532-0456(03)00140-6
- 8. Ahmed S., Mundhe N., Borgohain M., Chowdhury L., Kwatra M., Ahmed A., and Lahkar M. Diosmin modulates the NF-kB signal transduction pathwaysand downregulation of various oxidative stress markersin alloxan-induced diabetic nephropathy. Inflammation, 39 (5), 1783– 1797 (2016). DOI: 10.1007/s10753-016-0413-4
- 9. Arutyunyan T. V., Korystova A. F., Kublik L. N., Levitman M. Kh., Shaposhnikova V. V., and Korystov Y. N. Effects of taxifolin on the activity of angiotensin-converting enzyme and reactive oxygen and nitrogen species in the aorta of aging rats and rats treated with the nitric oxide synthase inhibitor and dexamethasone. Age, 35, 2089– 2097 (2013). DOI: 10.1007/s11357-012-9497-4
- 10. Samokhvalova T. V., Kim Y. A., Korystova A. F., Kublik L. N., Shaposhnikova V. V., and Korystov Y. N. (+)-Catechin stereoisomer and gallate induce oxidative stress in rat aorta. Molecules, 27, 3379 (2022).DOI: 10.3390/molecules27113379
- 11. Kim Y. A., Korystova A. F., Kublik L. N., Levitman M. Kh., Shaposhnikova V. V., and Korystov Y. N. Flavonoids decrease the radiation-induced increase in the activity of the angiotensin-converting enzyme in rat aorta. Eur. J. Pharmacol., 837 (1), 33–37 (2018).DOI: 10.1016/j.ejphar.2018.08.029
- 12. Griendling K. K., Minieri C. A., Ollerenshaw J. D., and Alexander R. W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res., 74 (6), 1141–1148 (1994).DOI: 10.1161/01.RES.74.6.1141
- 13. Anikina V. A., Kim Y. A., Korystova A. F., Levitman M. Kh., Shaposhnikova V. V., and Korystov Y. N. Effects of catechin on activity of angiotensin-converting enzyme and generation of reactive oxygen species in rat aorta. Bull. Exp. Biol. Med., 168 (11), 565–568 (2019). DOI: 10.1007/s10517-020-04766-0
- 14. Arutyunyan T. V., Korystova A. F., Kublik L. N., Levitman M. Kh., Shaposhnikova V. V., and Korystov Y. N. Taxifolin and fucoidin abolish the irradiation-induced increase in the production of reactive oxygen species in rat aorta. Bull. Exp. Biol. Med., 160 (5), 635–638 (2016). DOI: 10.1007/s10517-016-3236-2
- 15. Hasana Md. M., Ahmed Q. U., Soada S. Z. M., and Tunnab T. S. Animal models and natural products to investigate in vivo and in vitro antidiabetic activity. Biomed. Pharmacother., 101, 833–841 (2018).DOI: 10.1016/j.biopha.2018.02.137
- 16. Young P. W., Cawthorne M. A., Coyle P. J., Holder J. C., and Smith S. A. Report on the treatment of obese mice with BRL-49653, a new and potent insulin sensitizer, enhances insulin action in white adipocytes. Association with increased insulin binding and cell surface GLUT4 as measured by photo affinity labeling. Diabetes, 44 (9), 1087–1092 (1995). DOI: 10.2337/diab.44.9.1087
- 17. Ackermann A., Fernandez-Alfonso M. S., Sanchez-deRojas R., Ortega T., Paul M., and González C. Modulation of angiotensin-converting enzyme by nitric oxide. Br. J. Pharmacol., 124 (2), 291–298 (1998).DOI: 10.1038/sj.bjp.0701836
- 18. Miyamoto A., Murata S., and Nishio A. Role of ACE and NEP in bradykinin-induced relaxation and contraction response of isolated porcine basilar artery. NaunynSchmiedeberg’s Arch. Pharmacol., 365 (5), 365–370 (2002). DOI: 10.1007/s00210-002-0543-0
- 19. Korystov Y. N., Emel’yanov M. O., Korystova A. F., Levitman M. Kh., and Shaposhnikova V. V. Determination of reactive oxygen and nitrogen species in rat aorta using the dichlorofluorescein assay. Free Radic. Res., 43 (2), 149– 155 (2009). DOI: 10.1080/10715760802644686
- 20. Hanhineva K., Törrönen R., Bondia-Pons I., Pekkinen J., Kolehmainen M., Mykkänen H., and Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci., 11 (4), 1365–1402 (2010).DOI: 10.3390/ijms11041365
- 21. Hii C. S. T. and Howell S. L. Effects of epicatechin on rat islets of Langerhans. Diabetes, 33 (3), 291–296 (1984). DOI: 10.2337/diab.33.3.291
- 22. Montanya E., Nacher V., Biarnés M., and Soler J. Linear correlation between β-cell mass and body weight throughout the lifespan in Lewis rats. Role of β-cell hyperplasia and hypertrophy. Diabetes, 49 (8) 1341–1346 (2000). DOI: 10.2337/diabetes.49.8.1341
- 23. Hadcocks S., Richardson M., Winocour P., and Hatton M. W. C. Intimal alterationsin the first six months of alloxan-induced diabetes. Arterioscler. Thromb. Vasc. Biol., 11 (3), 517–529 (1991).DOI: 10.1161/01.ATV.11.3.517
- 24. Kim J. A., Berliner J. A., Natarajan R. D., and Nadler J. L. Evidence that glucose increases monocyte binding to human aortic endothelial cells. Diabetes, 43 (9), 1103–1107 (1994). DOI: 10.2337/diab.43.9.1103