RAS BiologyБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

Structure and Cooperative Interactions Between the Guanine Quadruplexes of the Promoter of β-Globin Gene

PII
S30345278S0006302925050021-1
DOI
10.7868/S3034527825050021
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 5
Pages
854-863
Abstract
Guanine quadruplexes are nucleic acid secondary structures present in the genomes of all eukaryotes, from yeast to mammals, where they play an important role in maintaining telomere integrity, creating TAD boundaries, and regulating transcription, alternative splicing, and translation. It was found that, contributing to the formation of a nucleosome-free region, guanine quadruplexes formed by two G-rich motifs inside the replication origin that is located within the β-globin promoter in , are necessary for the initiation of replication. In our work, circular dichroism spectroscopy was used to study the structures and dynamic properties of guanine quadruplexes formed by the β-globin promoter/origin sequence . The data obtained show that quadruplexes located on the same DNA fragment are formed cooperatively, influencing the structures of each other and the entire DNA fragment on which they are located. These data suggest that the structures of guanine quadruplexes may be determined by their genomic environment, and also help explain some of the properties of quadruplexes observed .
Keywords
гуаниновый квадруплекс нуклеосома βA-глобин ориджин репликации спектроскопия кругового дихроизма
Date of publication
13.12.2025
Year of publication
2025
Number of purchasers
0
Views
25

References

  1. 1. Leontis N. B. and Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA, 7, 499–512, (2001). DOI: 10.1017/S1355838201002515
  2. 2. Ghosh A. and Bansal M. A glossary of DNA structures from A to Z. Acta Crystallogr. D Biol. Crystallogr., 59, 620–626 (2003). DOI: 10.1107/S0907444903003251
  3. 3. Burge S., Parkinson G. N., Hazel P., Todd A. K., and Neidle S. Quadruplex DNA: Sequence, topology and structure. Nucl. Acids Res., 34, 5402–5415 (2006). DOI: 10.1093/NAR/GKL655
  4. 4. Phan A.T., Kuryavyi V., Burge S., Neidle S., and Patel D. J. Structure of an unprecedented G-quadruplex scaffold in the human c-Kit promoter. J. Am. Chem. Soc., 129, 4386–4392 (2007). DOI: 10.1021/JA068739H
  5. 5. Bhattacharyya D., Arachchilage G. M., and Basu S. Metal cations in G-quadruplex folding and stability. Front. Chem., 4, (2016). DOI: 10.3389/FCHEM.2016.00038
  6. 6. Guédin A., Gros J., Alberti P., and Mergny J. L. How long is too long? Effects of loop size on G-quadruplex stability. Nucl. Acids Res., 38, 7858–7868 (2010). DOI: 10.1093/NAR/GKQ639
  7. 7. Agrawal P., Hatzakis E., Guo K., Carver M., and Yang D. Solution structure of the major G-quadruplex formed in the human VEGF promoter in K: Insights into loop interactions of the parallel G-quadruplexes. Nucleic Acids Res 2013, 41, 10584–10592, DOI: 10.1093/NAR/GKT784
  8. 8. Pandey S., Agarwala P., and Maiti S. Effect of loops and G-quartets on the stability of RNA G-quadruplexes. J. Phys. Chem. B, 117, 6896–6905 (2013). DOI: 10.1021/JP401739M
  9. 9. Ma Y., Iida K., and Nagasawa K. Topologies of G-quadruplex: Biological functions and regulation by ligands. Biochem. Biophys. Res. Commun., 531, 3–17 (2020). DOI: 10.1016/j.bbrc.2019.12.103
  10. 10. Li Q. J., Tong X. J., Duan Y. M., and Zhou J. Q. Characterization of the intramolecular G-quadruplex promoting activity of Esri. FEBS Lett., 587, 659–665 (2013). DOI: 10.1016/J.FEBSLET.2013.01.024
  11. 11. Zhang L., Sui C., Yang W., and Luo Q. Amino acid transporters: Emerging roles in drug delivery for tumor-targeting therapy. Asian J. Pharm. Sci., 15, 192–206 (2020). DOI: 10.1016/j.aips.2019.12.002
  12. 12. Bryan T. M. G-quadruplexes at telomeres: Friend or foe? Molecules, 25 (16), 3686 (2020). DOI: 10.3390/molecules25163686
  13. 13. Shiekh S., Kodikara S. G., and Balci H. Structure, topology, and stability of multiple G-quadruplexes in long telomeric overhangs. J. Mol. Biol., 436 (1), 168205 (2024). DOI: 10.1016/j.jmb.2023.168205
  14. 14. Hou Y., Li F., Zhang R., Li S., Liu H., Qin Z. S., and Sun X. Integrative characterization of G-quadruplexes in the three-dimensional chromatin structure. Epigenetics, 14, 894–911 (2019). DOI: 10.1080/1559294.2019.1621140
  15. 15. Williams J. D., Housevova D., Johnson B. R., Dyniewski B., Berroyer A., French H., Barchie A. A., Bilbrey D. D., Demeis J. D., Ghee K. R., Hughes A. G., Kreitz N. W., McInnis C. H., Pudner S. C., Reeves M. N., Stahly A. N., Turcu A., Watters B. C., Daly G. T., Langley R. J., Gillespie M. N., Prakash A., Larson E. D., Kasukurthi M. V., Huang J., Jinks-Robertson S., and Borchert G. M. Characterization of long G4-rich enhancer-associated genomic regions engaging in a novel loop-loop “G4 Kissing” interaction. Nucl. Acids Res., 48, 5907–5925 (2020). DOI: 10.1093/NAR/GKAA357
  16. 16. Mao S. Q., Ghanbarian A. T., Spiegel J., Martinez Cuesta S., Beraldi D., Di Antonio M., Marsico G., Hänsel-Hertsch R., Tamahill D., and Balasubramanian S. DNA G-quadruplex structures mold the DNA methylome. Nat. Struct. Mol. Biol., 25, 951–957 (2018). DOI: 10.1038/S41594-018-0131-8
  17. 17. Berardinelli F., Tanori M., Muoto D., Buccarelli M., Di Masi A., Leone S., Ricci-Vitiani L., Pallini R., Mancuso M., and Antoccia A. G-Quadruplex ligand RHPS4 radiosensitizes glioblastoma xenograft in vivo through a differential targeting of bulky differentiated-and stem-cancer cells. J. Exp. Clin. Cancer Res., 38, 311 (2019). DOI: 10.1186/S13046-019-1293-X
  18. 18. Yang M., Carter S., Parmar S., Bunne D. D., Calabrese D. R., Liang X., Yazdani K., Xu M., Liu Z., Thiele C. J., and Schneekloch J. S. Targeting a noncanonical, hairpin-containing G-quadruplex structure from the MYCN gene. Nucl. Acids Res., 49, 7856–7869 (2021). DOI: 10.1093/NAR/GKAB594
  19. 19. Han Z. and Wen L. G.-Quadruplex in cancer energy metabolism: a potential therapeutic target. Biochim. Biophys. Acta Gen. Subj., 1869 (7), 130810 (2025). DOI: 10.1016/j.bbagen.2025.130810
  20. 20. Figueiredo J., Mergny J. L., and Cruz C. G.-Quadruplex ligands in cancer therapy: Progress, challenges, and clinical perspectives. Life Sci., 340, 122481 (2024). DOI: 10.1016/j.lfs.2024.122481
  21. 21. Bhattacharyya U., Bhatia T., Deshpande S. N., and Thelma B. K. Association of G-quadruplex variants with schizophrenia symptoms. Schizophr. Res., 243, 361–363 (2022). DOI: 10.1016/j.schres.2021.06.008
  22. 22. Mohaghegh P., Karow J. K., Brosn R. M., Bohr V. A., and Hickson I. D. The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucl. Acids Res., 29, 2843–2849 (2001). DOI: 10.1093/NAR/29.13.2843
  23. 23. Alkhunazi E., Shaheen R., Bharti S. K., Joseph-George A. M., Chong K., Abdel-Salam G. M. H., Alowan M., Blaser S. I., Papsin, B. C., Butt, M., Hashem M., Martin N., Godoy R., Brosn R. M. Jr, Alkuraya F. S., and Chitayat D. Warsaw breakage syndrome: Further clinical and genetic delineation. Am. J. Med. Genet. A, 176, 2404–2418 (2018), DOI: 10.1002/AJMG.A.40482
  24. 24. van Schiel J. J. M., Faramarz A., Balk J. A., Stewart G. S., Cantelli E., Oostra A. B., Rootmans M. A., Parish J. L., de Almeida Esteves C., Dumic, K., Barisic I., Diderich K. E. M., van Siegtenhorst M. A., Mahlab M., Pisani F. M., Te Riele H., Ameziane N., Wolthuis R. M. F., and de Lange J. Warsaw breakage syndrome associated DDXII helicase resolves G-quadruplex structures to support sister chromatid cohesion. Nat. Commun., 11 (1), 4287 (2020). DOI: 10.1038/S41467-020-18066-8
  25. 25. Poulet-Benedetti J., Tonnerre-Doncarii C., Valton A. L., Laurent M., Gerard M., Barinova N., Parisis N., Massip, F., Picard F., and Prioleau M. N. Dimeric G-quadruplex motifs-induced NFRS determine strong replication origins in vertebrates. Nat. Commun., 14, 4843 (2023). DOI: 10.1038/S41467-023-40441-4
  26. 26. Borras L. and Huguelet P. Schizophrenia and beta-thalassemia: A genetic link? Psychiatry Res., 158, 260–261 (2008). DOI: 10.1016/j.psychres.2007.11.001
  27. 27. Jin Y., Cheng Y., Mi J., and Xu J. A rare case of schizophrenia coexistence with antiphospholipid syndrome, β-thalassemia, and monoclonal gammopathy of undetermined significance. Front. Psychiatry, 14, 1178247 (2023). DOI: 10.3389/FPSYT.2023.1178247
  28. 28. Del Villar-Guerra R., Gray R. D., and Chaires J. B. Characterization of quadruplex DNA structure by circular dichroism. Curr. Protoc. Nucl. Acid Chem., 68, 17.8.1–17.8.16 (2017). DOI: 10.1002/CPNC.23
  29. 29. Zacchia M., Abategiovanni M. L., Stratigis S., and Capasso G. Potassium: From physiology to clinical implications. Kidney Dis. (Basel), 2, 72–79 (2016). DOI: 10.1159/000446268
  30. 30. Schiavone D., Guilbaud G., Murat P., Papadopoulou C., Sarkies P., Prioleau M., Balasubramanian S., and Sale J. E. Determinants of G quadruplex-induced epigenetic instability in REV 1-deficient cells. EMBO J., 33, 2507–2520 (2014). DOI: 10.15252/EMBI.201488398
  31. 31. Valton A. L., Hassan-Zadeh V., Lema I., Boggetto N., Alberti P., Saintomé C., Riou J. F., and Prioleau M. N. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J., 33, 732–746 (2014). DOI: 10.1002/EMBI.201387506
  32. 32. del Villar-Guerra R., Trent J. O., and Chaires J. B. G-quadruplex secondary structure obtained from circular dichroism spectroscopy. Angew. Chem. Int. Ed. Engl., 57, 7171–7175 (2018). DOI: 10.1002/ANIE.201709184
  33. 33. Harkness R. W. and Mittermaier A. K. G-register exchange dynamics in guanine quadruplexes. Nucl. Acids Res., 44, 3481–3494 (2016). DOI: 10.1093/NAR/GKW190
  34. 34. Linke R., Limmer M., Juranek S. A., Heine A., and Paeschke K. The relevance of G-quadruplexes for DNA repair. Int. J. Mol. Sci., 22 (22), 12599 (2021). DOI: 10.3390/IJMS222212599
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library