- Код статьи
- S30345278S0006302925050129-1
- DOI
- 10.7868/S3034527825050129
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 70 / Номер выпуска 5
- Страницы
- 958-968
- Аннотация
- Изучено влияние 30-суточного антиортостатического вывешивания самцов мыши на параметры спермограммы, в том числе при применении эссенциальных фосфолипидов. Измеряли концентрацию и подвижность сперматозоидов, оценивали оплодотворяющую способность, содержание холестерина, ионов кальция и цитокелетных белков в сперматозоидах. Для оценки специфичности изменений в сперматозоидах проводили определение содержания холестерина и цитокелетных белков с использованием клеток буккального эпителия. Показано, что антиортостатическое вывешивание приводило к снижению доли оплодотворенных ооцитов и отсутствию 2–4-клеточных зародышей, но применение эссенциальных фосфолипидов предотвращало эти изменения. Наблюдавшееся увеличение содержания холестерина в сперматозоидах, которое является неспецифическим ввиду аналогичных изменений в клетках буккального эпителия, в ответ на антиортостатическое вывешивание, а также накопление ионов кальция могли привести к изменению эффективности капацитации и вызывать снижение оплодотворяющей способности, что требует проведения дальнейших исследований.
- Ключевые слова
- невесомость антиортостатическое вывешивание сперматозоид цитокелет холестерин экзоти Mus musculus
- Дата публикации
- 11.12.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 20
Библиография
- 1. Forghani P., Liu W., Wang Z., Ling Z., Takaesu F., Yang E., Tharp G. K., Nielsen S., Doraisingam S., Countryman S., Davis M. E., Wu R., Jia S., and Xu C. Spaceflight alters protein levels and gene expression associated with stress response and metabolic characteristics in human cardiac spheroids. Biomaterials, 317, 123080 (2025). DOI: 10.1016/j.biomaterials.2024.123080
- 2. Bélanger Nzakimuena C., Masís Solano M., Marcotte-Collard R., Lesk M. R., and Costantino S. Spatial and temporal changes in choroid morphology associated with long-duration spaceflight. Invest. Ophthalmol. Vis. Sci., 66 (5), 17 (2025). DOI: 10.1167/iovs.66.5.17
- 3. Wuyts F. L., Deblieck C., Vandevoorde C., and Durante M. Brains in space: impact of microgravity and cosmic radiation on the CNS during space exploration. Nat. Rev. Neurosci., 26 (6), 354–371 (2025). DOI: 10.1038/s41583-025-00923-4
- 4. Kamiya H., Sasaki S., Ikeuchi T., Umemoto Y., Tatsura H., Hayashi Y., Kaneko S., and Kohri K. Effect of simulated microgravity on testosterone and sperm motility in mice. J. Androl., 24 (6), 885–890 (2003). DOI: 10.1002/j.1939-4640.2003.tb03140.x
- 5. Karim A., Qaisar R., Azeem M., Jose J., Ramachandran G., Ibrahim Z. M., Elmoselhi A., Ahmad F., Abdel-Rahman W. M., and Ranade A.V. Hindlimb unloading induces time-dependent disruption of testicular histology in mice. Sci. Rep., 12 (1), 17406 (2022). DOI: 10.1038/s41598-022-22385-9
- 6. Серова Л. В., Денисова Л. А., Апанасенко З. И., Кузнецова М. А. и Мейзеров Е. С. Репродуктивная функция крыс-самцов после полета на биоспутнике «Космос-1129». Космическая биология и авиакосмическая медицина, 16 (5), 62–65 (1982).
- 7. Серова Л. В. Влияние невесомости на репродуктивную систему млекопитающих. Космическая биология и авиакосмическая медицина, 23 (2), 11–16 (1989).
- 8. Ogneva I. V., Zhdankina Y. S., Gogichaeva K. K., Malkov A. A., and Biryukov N. S. The motility of mouse spermatozoa changes differentially after 30-minute exposure under simulating weightlessness and hypergravity. Int. J. Mol. Sci., 25 (24), 13561 (2024). DOI: 10.3390/ijms252413561
- 9. Ogneva I. V., Usik M. A., Biryukov N. S., and Zhdankina Y. S. Sperm motility of mice under simulated microgravity and hypergravity. Int. J. Mol. Sci., 21 (14), (2020). DOI: 10.3390/ijms21145054
- 10. Khongkha T., Rattanadechakul A., Surinlert P., Thongsum O., Boonkua S., Kongmanas K., Somrit M., Weerachatyanukul W., and Asuvapongpatana S. Role of lipid binding protein, Niemann pick type C-2, in enhancing shrimp sperm physiological function. Heliyon, 11 (1), e41341 (2024). DOI: 10.1016/j.heliyon.2024.e41341
- 11. Gogichaeva K. K. and Ogneva I. V. Administration of essential phospholipids prevents Drosophila melanogaster oocytes from responding to change in gravity. Cells, 13 (18), 1593 (2024). DOI: 10.3390/cells13181593
- 12. Usik M. A. and Ogneva I. V. Cytoskeleton structure in mouse sperm and testes after 30 days of hindlimb unloading and 12 hours of recovery. Cell Physiol. Biochem., 51 (1), 375–392, (2018). DOI: 10.1159/000495235
- 13. Morey-Holton E., Globus R. K., Kaplansky A., and Durnova G. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv. Space Biol. Med., 10, 7–40 (2005). DOI: 10.1016/s1569-2574(05)10002-1
- 14. Sventitskaya M. A. and Ogneva I. V. Reorganization of the mouse oocyte’ cytoskeleton after cultivation under simulated weightlessness. Life Sci. Space Res. (Amst)., 40, 8–18 (2024). DOI: 10.1016/j.lssr.2023.11.001
- 15. Morey-Holton E. R. and Globus R. K. Hindlimb unloading rodent model: technical aspects. J. Appl. Physiol. (1985), 92 (4), 1367–1377 (2002). DOI: 10.1152/japplphysiol.00969.2001
- 16. Huang L., Meng T. G., Ma X. S., Wang Z. B., Qi S. T., Chen Q., Zhang Q. H., Liang Q. X., Wang Z. W., Hu M. W., Guo L., Ouyang Y. C., Hou Y., Zhao Y., and Sun Q. Y. Rad9a is involved in chromatin decondensation and post-zygotic embryo development in mice. Cell Death Differ., 26 (5), 969–980 (2019). DOI: 10.1038/s41418-018-0181-9
- 17. Xiong Y., Ma C., Li Q., Zhang W., Zhao H., Ren P., Zhang K., and Lei X. Melatonin ameliorates simulated-microgravity-induced mitochondrial dysfunction and lipid metabolism dysregulation in hepatocytes. FASEB J., 37 (9), e23132 (2023). DOI: 10.1096/fj.202301137R
- 18. Маркин А. А., Журавлева О. А., Кузичкин Д. С., Вострикова Л. В., Заболотская И. В., Томиловская Е. С., Логинов В. И. и Степанова Г. П. Исследование метаболических реакций у испытуемых в динамике 21-суточной «сухой» иммерсии. Авиакосмическая и экологическая медицина, 54 (4), 88–92 (2020). DOI: 10.21687/0233-528X-2020-54-4-88-92
- 19. Chubinskiy-Nadezhdin V. I., Negulyaev Y. A., and Morachevskaya E. A. Cholesterol depletion-induced inhibition of stretch-activated channels is mediated via actin rearrangement. Biochem. Biophys. Res. Commun., 412 (1), 80–85 (2011). DOI: 10.1016/j.bbrc.2011.07.046
- 20. Morachevskaya E., Sudarikova A., and Negulyaev Y. Mechanosensitive channel activity and F-actin organization in cholesterol-depleted human leukaemia cells. Cell Biol. Int., 31 (4), 374–381 (2007). DOI: 10.1016/j.cellbi.2007.01.024
- 21. Lopez C. I., Pelletán L. E., Suhaiman L., De Blas G. A., Vitale N., Mayorga L. S., and Belmonte S. A. Diacylglycerol stimulates acrosomal exocytosis by feeding into a PKCand PLD1-dependent positive loop that continuously supplies phosphatidylinositol 4,5-bisphosphate. Biochim. Biophys. Acta, 1821 (9), 1186–1199 (2012). DOI: 10.1016/j.bbalip.2012.05.001