RAS BiologyБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

UV-Visible Light-Induced Luminescence Processes in Non-Aromatic Amino Acids Solution at Room Temperature

PII
S0006302925010029-1
DOI
10.31857/S0006302925010029
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
14-21
Abstract
We demonstrate for the first time that aqueous solutions of non-aromatic amino acids such as L-arginine hydrochloride, L-lysine hydrochloride and glycine can simultaneously emit fluorescence and afterglow upon excitation with UV-visible light at room temperature. The luminescence afterglow differs from conventional fluorescence by its weak intensity and long emission duration. The presence of short-lived and long-lived fluorescence in non-traditional luminophores indicates a dual nature of fluorescence and the existence of excited states of different natures. The detected correlation in the shape of short-lived and long-lived fluorescence spectra suggests that the luminescence afterglow corresponds to thermally activated delayed fluorescence arising through the mechanism of reconversion from the lowest triplet state T1 to the lowest singlet state S1. Further studies will help to shed light on the understanding of the biophysics of photoinduced processes in biological systems.
Keywords
неароматические флуоресцирующие аминокислоты собственная флуоресценция послесвечение люминесценции при комнатной температуре вода ненасыщенный раствор
Date of publication
24.10.2025
Year of publication
2025
Number of purchasers
0
Views
19

References

  1. 1. Shukla A., Mukherjee S., Sharma S., Agrawal V., Kishan K. V. R., and Guptasarma P. A novel UV laser induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding? Arch. Biochem. Biophys., 428 (2), 144–153 (2004). DOI: 10.1016/j.abb.2004.05.007
  2. 2. Chen X., Luo W., Ma H., Peng Q., Yuan W. Z., and Zhang Y. Prevalent intrinsic emission from nonaromatic amino acids and (poly(aminoacids). Sci. China Chen., 61 (3), 351–359 (2018). DOI: 10.1007/s11426-017-9114-4
  3. 3. Homchaudhuri L. and Swaminathan R. Novel absorption and fluorescence characteristics of L-lysine. Chem. Lett., 30 (8), 844−845 (2001).
  4. 4. del Mercato L. L., Pompa P. P., Maruccio G., Torre A. D., Sabella S., Tamburro A. M., Cigolani R., and Rinaldi R. Charge transport and intrinsic fluorescence in amyloid-like fibrils. Proc. Natl. Acad. Sci. USA., 104 (46), 18019–18024 (2007). DOI: 10.1073/pnas.0702843104
  5. 5. Chan F. T. S., Kaminski Schierle G. S., Kumita J. R., Bertoncini C. W., Dobson C. M. and Kaminski C. F. Protein amyloids develop an intrinsic fluorescence signature during aggregation. Analyst., 138 (7), 2156–2162 (2013). DOI: 10.1039/C3AN36798C
  6. 6. Zhang H., Zhao Z., McGonigal P. R., Ye R., Liu S., Lam J. W. Y., Kwok R. T. K., Yuan W. Z., Xie J., Rogach A. L., and Tang B. Z. Clusterization-triggered emission: Uncommon luminescence from common materials. Materials Today, 32, 275–292 (2020). DOI: 10.1016/j.mattod.2019.08.010
  7. 7. Guptasarma P. Solution-state characteristics of the ultraviolet A-induced visible fluorescence from proteins. Arch. Biochem. Biophys., 478 (2), 127–129 (2008). DOI: 10.1016/j.abb.2008.08.002
  8. 8. Ye R., Liu Y., Zhang H., Su H., Zhang Y., Xu L., Hu R., Kwok R. T. K., Wong K. S., Lam J. W. Y., Goddard III W. A., and Tang B. Z. Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. Polym. Chem., 8 (10), 1722–1727 (2017). DOI: 10.1039/c7py00154a
  9. 9. Pinotsi D., Buell A. K., Dobson C. M., Kaminski Schierle G. S., and Kaminski C. F. A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence. Chem. Bio. Chem., 14 (7), 846–850 (2013). DOI: 10.1002/cbic.201300103
  10. 10. Hong Y., Lam J. W. Y., and Tang B. Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun., 29, 4332–4353 (2009). DOI: 10.1039/B904665H
  11. 11. Homchaudhuri L. and Swaminathan A.G. Near ultraviolet absorption arising from lysine residues in close proximity: a probe to monitor protein unfolding and aggregation in lysine-rich proteins. Bull. Chem. Soc. Jpn., 77 (4), 765–766 (2004). DOI: 10.1246/bcsj.77.765
  12. 12. Liao P., Huang J., Yan Y., and Tang B. Z. Clusterizationtriggered emission (CTE): one for all, all for one. Mater. Chem. Front., 5 (18), 6693−6717 (2021). DOI: 10.1039/D1QM00808K
  13. 13. Pinotsi D., Grisanti L., Mahou P., Gebauer R., Kaminski C.F., Hassanali A., and Kaminski Schierle G. S. Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures. J. Am. Chem. Soc., 138 (9), 3046–3057 (2016). DOI: 10.1021/jacs.5b11012
  14. 14. Zhao W., He Z., and Tang B. Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater., 5 (12), 869–885 (2020). DOI: 10.1038/s41578-020-0223-z
  15. 15. Теренин А. Н. Фотоника молекул красителей и родственных органических соединений (Наука, Ленинград, 1967).
  16. 16. Lakowicz J. R. Principles of Fluorescence Spectroscopy, 3rd edition, Ed. by J. R. Lakowicz (Springer, Berlin., Germany, 2006).
  17. 17. Luo X., Tian B., Zhai Y., Guo H., Liu S., Li J., Li S., James T. D., and Chen Z. Room-temperature phosphorescent materials derived from natural resources. Nat. Rev. Chem., 7 (11), 800–812 (2023). DOI: 10.1038/s41570-023-00536-4
  18. 18. Дегтярева О. В., Афанасьев В. Н., Хечинашвили Н. Н., Терпугов Е. Л. Структура и свойства L-лизина монохлорида и L-глицина в жидкой фазе при воздействии оптическим излучением низкой интенсивности. Современные проблемы науки и образования, 4, 288 (2013). URL: https://scienceeducation.ru/ru/article/view?id=10010.
  19. 19. Terpugov E. L., Kondratyev M. S. and Degtyareva O. V. Light-induced effects in glycine aqueous solution studied by Fourier transform infrared-emission spectroscopy and ultraviolet-visible spectroscopy. J. Biomol. Struct. Dynamics, 39 (1), 108−117 (2020). DOI: 10.1080/07391102.2020.1717628
  20. 20. Terpugov E. L., Udaltsov S. N., and Degtyareva O. V. Study of the Spectral Characteristics of L-Lysine and L-Arginine Using UV-VIS Spectroscopy and SteadyState and Synchronous Fluorescence Spectroscopy. Biophysics, 66 (5), 726–732 (2021). DOI: 10.1134/S0006350921050250
  21. 21. Demchenko A. P. The red-edge effects: 30 years of exploration. Luminescence, 17 (1), 19–42 (2002). DOI: 10.1002/bio.671
  22. 22. Борн М. и Вольф Э. М. Основы оптики (Наука, М., 1973).
  23. 23. Khanarian G. and Moore W. J. The Kerr effect of amino acids in water. Austral. J. Chem., 33 (8), 1727–1741 (1980). DOI: 10.1071/CH9801727
  24. 24. Dou X., Zhou Q., Chen X., Tan Y., He X., Lu P., Sui K., Tang B. Z., Zhang Y., and Yuan W. Z. Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate. Biomacromolecules, 19 (6), 2014−2022 (2018). DOI: doi.org/10.1021/acs.biomac.8b00123
  25. 25. Xiao G., Fang X., Ma Yu-J., and Yan D. Multi-mode and dynamic persistent luminescence from metal cytosine halides through balancing excited-state proton transfer. Adv.Sci. (Weinh), 9 (16), e2200992 (2022). DOI: 10.1002/advs.202200992
  26. 26. Zhang P., Zhang S., Yang J., Li P., and Li H. Clusterization-triggered room temperature phosphorescence supramolecular assembly with extraordinary stimulus-responsive features from nonaromatic amino acids. Chemistry – Eur. J., 29 (38), e202300371 (2023). DOI: 10.1002/chem.202300371
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library