RAS BiologyБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

Complexation of Papain with Particles of Chitosan and Carboxymethylchitosan, Obtained in the Presence and in the Absence of Ascorbic Acid

PII
S0006302925010036-1
DOI
10.31857/S0006302925010036
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
22-34
Abstract
Particles of medium and high molecular weight chitosans and carboxymethylchitosans were obtained without and with the addition of ascorbic acid. Methods were developed to obtain complexes of these particles with the plant protease papain. It was found that the activity of papain complexes with particles of carboxymethyl chitosan is significantly higher compared to its complexes with particles of chitosan. At the same time, complexes with particles of chitosan and carboxymethyl chitosan obtained with the addition of ascorbic acid showed higher values of proteolytic activity than complexes with polysaccharide particles obtained without its addition. Using molecular docking, it was found that amino acid residues of papain interact with both chitosan and carboxymethyl chitosan mainly by forming hydrogen bonds and van der Waals interactions. In addition, ascorbic acid molecules and both types of polysaccharides interact with amino acid residues from the active site of papain – Cys25 and His159, which probably contributes to an increase in the activity and stability of the enzyme in complexes with particles of chitosan and carboxymethyl chitosan, including due to the fact that ascorbic acid prevents the oxidation of the thiol group of papain, which is responsible for the act of catalysis.
Keywords
папаин хитозан карбоксиметилхитозан комплексообразование
Date of publication
24.10.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Тризна Е. Ю., Байдамшина Д. Р., Холявка М. Г., Шарафутдинов И. С., Хаирутдинова А. Р., Хафизова Ф. А., Закирова Е. Ю., Хафизов Р. Г., Богачев М. И. и Каюмов А. Р. Растворимые и иммобилизованные папаин и трипсин-деструкторы бактериальных биопленок. Гены и клетки, 10 (3), 106 (2015).
  2. 2. Yaakobi T., Cohen-Hadar N., Yaron H., Hirszowicz E., Simantov Y., Bass A., and Freeman A. Wound debridement by continuous streaming of proteolytic enzyme solutions: Effects on experimental wound model in porcine. Wounds, 19, 192–200 (2007).
  3. 3. Weiss J., Gibis M., Schuh V., and Salminen H. Advances in ingredient and processing systems for meat and meat products. Meat Sci., 86 (1), 196 (2010). DOI: 10.1016/j.meatsci.2010.05.008
  4. 4. Lopes M. C., Mascarini R. C., da Silva B. M., Flório F. M., and Basting R. T. Effect of a papain-based gel for chemomechanical caries removal on dentin shear bond strength. J. Dent. Child., 74 (2), 93–97 (2007).
  5. 5. Flanagan R. J. and Jones A. L. Fab antibody fragments: some applications in clinical toxicology. Drug safety, 27 (14), 1115–1133 (2004). DOI: 10.2165/00002018-200427140-00004
  6. 6. Kaiser O., Aliuos P., Wissel K., Lenarz T., Werner D., Reuter G., Kral A., and Warnecke A. Dissociated neurons and glial cells derived from rat inferior colliculi after digestion with papain. PloS One, 8 (12), e80490 (2013). DOI: 10.1371/journal.pone.0080490
  7. 7. Holyavka M. G., Artyukhov V. G., Sazykina S. M., and Nakvasina M. A. Physical, chemical, and kinetic properties of trypsin-based heterogeneous biocatalysts immobilized on ion-exchange fiber matrices. Pharmaceut. Chem. J., 51 (8), 702–706 (2017). DOI: 10.1007/s11094-017-1678-0
  8. 8. Olshannikova S. S., Malykhina N. V., Lavlinskaya M. S., Sorokin A. V., Yudin N. E., Vyshkvorkina Y. M., Lukin A. N., Holyavka M. G., and Artyukhov V. G. Novel immobilized biocatalysts based on cysteine proteases bound to 2-(4-acetamido-2-sulfanilamide) chitosan and research on their structural features. Polymers, 14 (15), 3223 (2022). DOI: 10.3390/polym14153223
  9. 9. Ouyang X., Reihill J. A., Douglas L. E. J., and Martin S. L. Airborne indoor allergen serine proteases and their contribution to sensitisation and activation of innate immunity in allergic airway disease. Eur. Respir. Rev., 33 (172), 230126 (2024). DOI: 10.1183/16000617.0126-2023
  10. 10. Tacias-Pascacio V. G., Castañeda-Valbuena D., Tavano O., Abellanas-Perez P., de Andrades D., SantizGómez J. A., Berenguer-Murcia Á., and Fernandez-Lafuente R. A review on the immobilization of bromelain. Int. J. Biol. Macromol., 273, 133089 (2024). DOI: 10.1016/j.ijbiomac.2024.133089
  11. 11. Rodrigues R. C., Ortiz C., Berenguer-Murcia Á., Torres R., and Fernández-Lafuente R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev., 42 (15), 6290–6307 (2013). DOI: 10.1039/c2cs35231a
  12. 12. Rodrigues R. C., Berenguer-Murcia Á., Carballares D., Morellon-Sterling R., and Fernandez-Lafuente R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol. Adv., 52, 107821 (2021). DOI: 10.1016/j.biotechadv.2021.107821
  13. 13. Pronk S., Lindahl E., and Kasson P. M. Dynamic heterogeneity controls diffusion and viscosity near biological interfaces. Nature Commun., 5 (1), 3034 (2014). DOI: 10.1038/ncomms4034
  14. 14. Arsalan A. and Younus H. Enzymes and nanoparticles: Modulation of enzymatic activity via nanoparticles. Int. J. Biol. Macromol., 118, 1833–1847 (2018). DOI: 10.1016/j.ijbiomac.2018.07.030
  15. 15. Bilal M., Qamar S. A., Carballares D., BerenguerMurcia Á., and Fernandez-Lafuente R. Proteases immobilized on nanomaterials for biocatalytic, environmental and biomedical applications: Advantages and drawbacks. Biotechnol. Adv., 70, 108304 (2024). DOI: 10.1016/j.biotechadv.2023.108304
  16. 16. Gao P., Xia G., Bao Z., Feng C., Cheng X., Kong M., LiuY., and Chen X. Chitosan based nanoparticles as protein carriers for efficient oral antigen delivery. Int. J. Biol. Macromol., 91, 716–723 (2016). DOI: 10.1016/j.ijbiomac.2016.06.015
  17. 17. Ngasotter S., Xavier K. А. M., Meitei M. M., Waikhom D., Pathak J., and Singh S. K. Crustacean shell waste derived chitin and chitin nanomaterials for application in agriculture, food, and health – A review. Carbohydrate Polymer Technologies and Applications, 6 (10), 100349 (2023). DOI: 10.1016/j.carpta.2023.100349
  18. 18. Lin K.-P., Feng G.-J., Pu F.-L., Hou X.-D., and Cao S.-L. Enhancing the thermostability of papain by immobilizing on deep eutectic solvents-treated chitosan with optimal microporous structure and catalytic microenvironment. Front. Bioeng. Biotechnol., 8, 576266 (2020). DOI: 10.3389/fbioe.2020.576266
  19. 19. Silva D. F., Rosa H., Carvalho A. F. А., and Oliva-Neto P. Immobilization of papain on chitin and chitosan and recycling of soluble enzyme for deflocculation of Saccharomyces cerevisiae from bioethanol distilleries. Enzyme Res., 2015, 573721 (2015). DOI: 10.1155/2015/573721
  20. 20. Zhang Z., Abidi N., and Lucia L. Smart superabsorbent alginate/carboxymethyl chitosan composite hydrogel beads as efficient biosorbents for methylene blue dye removal. J. Mater. Sci. Technol., 159, 81–90 (2023). DOI: 10.1016/j.jmst.2023.02.045
  21. 21. Geng Y., Xue H., Zhang Z., Panayi A. C., Knoedler S., Zhou W., Mi B., and Liu G. Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydrate polymers, 305, 120555 (2023). DOI: 10.1016/j.carbpol.2023.120555
  22. 22. Zhang H., Gu Z., Li W., Guo L., Wang L., Guo L., Ma S., Han B., and Chang J. pH-sensitive O-carboxymethyl chitosan/sodium alginate nanohydrogel for enhanced oral delivery of insulin. Int. J. Biol. Macromol., 223, 433–445 (2022). DOI: 10.1016/j.ijbiomac.2022.10.274
  23. 23. Tan W., Long T., Wan Y., Li B., Xu Z., Zhao L., Mu C., Ge L., and Li D. Dual-drug loaded polysaccharide-based self-healing hydrogels with multifunctionality for promoting diabetic wound healing. Carbohydrate Polymers, 312, 120824 (2023). DOI: 10.1016/j.carbpol.2023.120824
  24. 24. Homaei A. A., Sajedi R. H., Sariri R., Seyfzadeh S., and Stevanato R. Cysteine enhances activity and stability of immobilized papain. Amino Acids, 38 (3), 937–942 (2010). DOI: 10.1007/s00726-009-0302-3
  25. 25. Gülçin İ. Antioxidant activity of food constituents: an overview. Arch. Toxicol., 86 (3), 345–391 (2012). DOI:10.1007/s00204-011-0774-2
  26. 26. Klaui H. and Pongracz G. Ascorbic acid and derivatives as antioxidants in oils and fats. In: Vitamin C (ascorbic acid), Ed. by J. N. Counsell and D. H. Hornig (Applied Science Publishers, Englewood NJ, 1981), pp. 139–166.
  27. 27. Ramos A. R., Tapia A. K. G., Pinol C. M. N., Lantican N. B., del Mundo Ma. L. F., Manalo R. D., and Herrera M. U. Effects of reaction temperatures and reactant concentrations on the antimicrobial characteristics of copper precipitates synthesized using L-ascorbic acid as reducing agent. J. Sci.: Adv. Mater. Devices, 4, 66–71 (2019). DOI: 10.1016/j.jsamd.2018.12.009
  28. 28. Verma M. L., Kumar S., Das A., Randhawa J. S., and Chamundeeswari M. Enzyme immobilization on chitin and chitosan-based supports for biotechnological applications. Sustainable Agricult. Rev., 35, 147–173 (2019). DOI: 10.1007/978-3-030-16538-3_4
  29. 29. Liu Y., Wang K., Zheng H., Ma M., Li S., and Ma L. Papain immobilization on interconnected-porous chitosan macroparticles: Application in controllable hydrolysis of egg white for foamability improvement. Food Hydrocolloids, 139 (2), 108551 (2023). DOI: 10.1016/j.foodhyd.2023.108551
  30. 30. Liu Y., Cai Z., Ma M., Sheng L., and Huang X. Effect of eggshell membrane as porogen on the physicochemical structure and protease immobilization of chitosan-based macroparticles. Carbohydrate Polymers, 242, 116387 (2020). DOI: 10.1016/j.carbpol.2020.116387
  31. 31. Sorokin A. V., Olshannikova S. S., Lavlinskaya M. S., Holyavka M. G., Faizullin D. A., Zuev Y. F., and Artukhov V. G. Chitosan graft copolymers with n-vinylimidazole as promising matrices for immobilization of bromelain, ficin, and papain. Polymers, 14 (11), 2279 (2022). DOI: 10.3390/polym14112279
  32. 32. Holyavka M., Faizullin D., Koroleva V., Olshannikova S., Zakhartchenko N., Zuev Y., Kondratyev M., Zakharova E., and Artyukhov V. Novel biotechnological formulations of cysteine proteases, immobilized on chitosan. Structure, stability and activity. Int. J. Biol. Macromolecules, 180, 161–176 (2021). DOI: 10.1016/j.ijbiomac.2021.03.016
  33. 33. Baidamshina D. R., Koroleva V. A., Olshannikova S. S., Trizna E. Yu., Bogachev M. I., Artyukhov V. G., Holyavka M. G., and Kayumov A. R. Biochemical Properties and Anti-Biofilm Activity of Chitosan-Immobilized Papain. Mar. Drug, 19 (4), 197 (2021). DOI: 10.3390/md19040197
  34. 34. Lavlinskaya M. S., Sorokin A. V., Mikhaylova A. A., Kuznetsov E. I., Baidamshina D. R., Saranov I. A., Grechkina M. V., Holyavka M. G., Zuev Y. F., Kayumov A. R., and Artyukhov V. G. The low-waste grafting copolymerization modification of chitosan is a promising approach to obtaining materials for food applications. Polymers, 16 (11), 1596 (2024). DOI: 10.3390/polym16111596
  35. 35. Сорокин А. В., Ольшанникова С. С., Малыхина Н. В., Сакибаев Ф. А., Холявка М. Г., Лавлинская М. С. и Артюхов В. Г. Ацильномодифицированные водорастворимые производные хитозана – носители для адсорбционной иммобилизации папаина. Биоорган. химия, 48 (3), 340–351 (2022). DOI: 10.31857/S013234232202021X
  36. 36. Ольшанникова С. С., Малыхина Н. В., Лавлинская М. С., Сорокин А. В., Холявка М. Г. и Артюхов В. Г. Разработка биокатализатора на основе папаина, стабилизированного в комплексах с хитозаном и его производными: карбоксиметилхитозаном и N-(2-гидрокси)пропил-3-триметиламмоний хитозаном. Биотехнология, 38 (1), 39–46 (2022). DOI: 10.56304/S0234275822010057
  37. 37. Гончарова С. С., Редько Ю. А., Лавлинская М. С., Сорокин А. В., Кондратьев М. С., Юдин Н. Е., Путинцева О. В., Наквасина М. А., Холявка М. Г. и Артюхов В. Г. Разработка биокатализатора на основе папаина, иммобилизованного на ацетате хитозана. Вестн. ВГУ. Сер. «Химия. Биология. Фармация», № 1, 82–88 (2023).
  38. 38. da Silva Melo A. E. C., de Sousa F. S. R., dos Santos-Silva A. M., do Nascimento E. G., Fernandes-Pedrosa M. F., de Medeiros C. A. C. X., and da Silva-Junior A. A. Immobilization of papain in chitosan membranes as a potential alternative for skin wounds. Pharmaceutics, 15 (12), 2649 (2023). DOI: 10.3390/pharmaceutics15122649
  39. 39. Ol’shannikova S. S., Red’ko Y. A., Lavlinskaya M. S., Sorokin, A. V., Holyavka M. G., and Artyukhov V. G. Preparation of papain complexes with chitosan microparticles and evaluation of their stability using the enzyme activity level. Pharm. Chem. J., 55, 1240–1244 (2022). DOI: 10.1007/s11094-022-02564-8
  40. 40. Гончарова С. С., Редько Ю. А., Лавлинская М. С., Сорокин А. В., Холявка М. Г., Кондратьев М. С. и Артюхов В. Г. Биокатализаторы на основе ассоциатов папаина с наночастицами хитозана. Конденсированные среды и межфазные границы, 25 (2), 173–181 (2023). DOI: 10.17308/kcmf.2023.25/11098
  41. 41. Chen S.-C., Wu Y.-C., Mi F.-L., Lin Y.-H., Yu L.-C., and Sung H.-W. A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J. Control. Release, 96 (2), 285–300 (2004). DOI: 10.1016/j.jconrel.2004.02.002
  42. 42. Королева В. А., Холявка М. Г., Ольшаникова С. С. и Артюхов В. Г. Разработка методики получения комплексов фицина с наночастицами хитозана с высоким уровнем протеолитической активности. Биофармацевтич. журн., 10 (4), 36–40 (2018).
  43. 43. Sabirova A. R., Rudakova N. L., Balaban N. P., Ilyinskaya O. N., Demidyuk I. V., Kostrov S. V., Rudenskaya G. N., and Sharipova M. R. A novel secreted metzincin metalloproteinase from Bacillus intermedius. FEBS Lett., 584 (21), 4419–4425 (2010). DOI: 10.1016/j.febslet.2010.09.049
  44. 44. Laskowski R. A. and Swindells M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 51 (10), 2778–2786 (2011). DOI: 10.1021/ci200227u
  45. 45. Salentin S., Schreiber S., Haupt V. J., Adasme M. F., and Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucl. Acids Res., 43 (W1), W443–W447 (2015). DOI: 10.1093/nar/gkv315
  46. 46. Sikorski D., Gzyra-Jagieła K., and Draczyński Z. The kinetics of chitosan degradation in organic acid solutions. Marine Drugs, 19 (5), 236 (2021). DOI: 10.3390/md19050236
  47. 47. Nguyen T. T. B., Hein S., Ng C.-H., and Stevens W. F. Molecular stability of chitosan in acid solutions stored at various conditions. J. Appl. Polymer Sci., 107 (4), 2588–2593 (2007). DOI: 10.1002/app.27376
  48. 48. Poshina D. N., Raik S. V., Poshin A. N. and Skorik Y. A. Accessibility of chitin and chitosan in enzymatic hydrolysis: A review. Polymer Degradation and Stability, 156, 269–278 (2018). DOI: 10.1016/j.polymdegradstab.2018.09.005
  49. 49. Матиев О. В. и Белов А. А. Иммобилизация папаина на хитозан. Успехи в химии и химической технологии, 35 (12), 117–119 (2021).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library