ОБНБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

ИССЛЕДОВАНИЕ ФУНКЦИОНАЛЬНЫХ ПРОЯВЛЕНИЙ МИССЕНСМУТАЦИИ Met23Leu В ДОПОЛНИТЕЛЬНОЙ СУБЪЕДИНИЦЕ KCNE2 (Mirp1) СЕРДЕЧНОГО КАНАЛА Kv11.1

Код статьи
S0006302925010113-1
DOI
10.31857/S0006302925010113
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 70 / Номер выпуска 1
Страницы
93-103
Аннотация
Проведен функциональный анализ миссенс-мутации c.67A>T (p.Met23Leu) в гене KCNЕ2, кодирующем дополнительную субъединицу калиевого канала Kv11.1. Вариант был выявлен у пациента с асимптомным удлинением интервала QT на электрокардиограмме. Мы искусственно ввели эту замену в плазмиду, содержащую кодирующую последовательность гена KCNE2, и экспрессировали мутантный ген в клетках яичника китайского хомячка вместе с геном канала Kv11.1 дикого типа, чтобы оценить влияние мутации на параметры тока IK1. Мы использовали комплексный подход, включающий изучение интегрального тока IKr с помощью метода локальной фиксации потенциала в конфигурации whole-cell в режиме фиксации потенциала. В результате исследования было показано, что мутация c.67A>T (p.Met23Leu) реализуется по типу “gain of function”, однако плотность тока, переносимого каналами Kv11.1, достоверно снижается. Флуоресцентная микроскопия показала нарушение трафика канала, коэкспрессированного с мутантной субъединицей к поверхности клетки. Для изучения расположения мутантной субъединицы относительно мембраны применено молекулярное моделирование.
Ключевые слова
потенциал-зависимые калиевые ионные каналы синдром удлиненного интервала QT первичные каналопатии взаимодействие с мембраной
Дата публикации
24.10.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
19

Библиография

  1. 1. Соколова О. С., Кирпичников М. П., Шайтан К. В., Антонов М. Ю., Волынцева А. Д., Глухов Г. С., Горделий В. И., Деркачева Н. И., Карлова М. Г., Кузьмичёв П. К., Люкманова Е. Н., Моисеенко А. В., Мышкин М. Ю., Некрасова О. В., Новоселецкий В. Н., Охрименко И. С., Парамонов А. С., Попинако А. В., Станишнева-Коновалова Т. Б., Трифонова Е. С., Феофанов А. В., Чупин В. В., Шевцов М. Б. и Шенкарёв З. О. Современные методы изучения структуры и функций ионных каналов (Товарищество научных изданий КМК, М., 2020). EDN: ICASCW
  2. 2. Chen S., Francioli L. C., Goodrich J. K., Collins R. L., Kanai M., Wang Q., Alföldi J., Watts N. A., Vittal C., Gauthier L. D., Poterba T., Wilson M. W., Tarasova Y., Phu W., Grant R., Yohannes M. T., Koenig Z., FarjounY., Banks E., Donnelly S., Gabriel S., Gupta N., Ferriera S., Tolonen C., Novod S., Bergelson L., Roazen D., Ruano-Rubio V., Covarrubias M., Llanwarne C., Petrillo N., Wade G., Jeandet T., Munshi R., Tibbetts K., Genome Aggregation Database (gnomAD) Consortium, O’Donnell-Luria A., Solomonson M., Seed C., Martin A. R., Talkowski M. E., Rehm H. L., Daly M. J., Tiao G., Neale B. M., MacArthur D. G., and Karczewski K. J. A genomic mutational constraint map using variation in 76,156 human genomes. Nature, 625, 92–100 (2024). DOI: 10.1038/s41586-023-06045-0
  3. 3. Schwartz P. J., Ackerman M. J., George A. L., Jr., and Wilde A. A. M. Impact of genetics on the clinical management of channelopathies. J. Am. Coll. Cardiol., 62 (3), 169–180 (2013). DOI: 10.1016/j.jacc.2013.04.044
  4. 4. Bohnen M. S., Peng G., Robey S. H., Terrenoire C., Iyer V., Sampson K. J., and Kass R. S. Molecular pathophysiology of congenital long QT syndrome. Physiol. Rev., 97 (1), 89–134 (2017). DOI: 10.1152/physrev.00008.2016
  5. 5. Schwartz P. J., Stramba-Badiale M., Crotti L., Pedrazzini M., Besana A., Bosi G., Gabbarini F., Goulene K., Insolia R., Mannarino S., Mosca F., Nespoli L., Rimini A., Rosati E., Salice P., and Spazzolini C. Prevalence of the congenital long-QT syndrome. Circulation, 120 (18), 1761–1767 (2009). DOI: 10.1161/CIRCULATIONAHA.109.863209
  6. 6. Schwartz P. J. and Ackerman M. J. The long QT syndrome: a transatlantic clinical approach to diagnosis and therapy. Eur. Heart J., 34 (40), 3109–3116 (2013). DOI: 10.1093/eurheartj/eht089
  7. 7. Schwartz P. J., Priori S. G., Spazzolini C., Moss A. J., Vincent G. M., Napolitano C., Denjoy I., Guicheney P., Breithardt G., Keating M. T., Towbin J. A., Beggs A. H., Brink P., Wilde A. A., Toivonen L., Zareba W., Robinson J. L., Timothy K. W., Corfield V., Wattanasirichaigoon D., Corbett C., Haverkamp W., SchulzeBahr E., Lehmann M. H., Schwartz K., Coumel P., and Bloise R. Genotype-phenotype correlation in the longQT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation, 103 (1), 89–95 (2001). DOI: 10.1161/01.cir.103.1.89
  8. 8. Schwartz P. J. and Crotti L. Long and short QT syndromes. In: Cardiac Electrophysiology: From Cell to Bedside (Seventh Edition), Ed. by D. P. Zipes, J. Jalife, and W. G. Stevenson (Elsiever, 2018), pp. 893–904. DOI: 10.1016/B978-0-323-44733-1.00093-6
  9. 9. Schwartz P. J., Crotti L., and George A. L. Jr. Modifier genes for sudden cardiac death. Eur. Heart J., 39 (44), 3925–3931 (2018). DOI: 10.1093/eurheartj/ehy502
  10. 10. Lundby A., Andersen M. N., Steffensen A. B., Horn H., Kelstrup C. D., Francavilla C., Jensen L. J., Schmitt N., Thomsen M. B., and Olsen J. V. In vivo phosphoproteomics analysis reveals the cardiac targets of beta-adrenergic receptor signaling. Sci. Signal., 6 (278), rs11 (2013). DOI: 10.1126/scisignal.2003506
  11. 11. Marx S. O., Kurokawa J., Reiken S., Motoike H., D’Armiento J., Marks A. R., and Kass R. S. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science, 295 (5554), 496–499 (2002). DOI: 10.1126/science.1066843
  12. 12. Chen L., Marquardt M. L., Tester D. J., Sampson K. J., Ackerman M. J., and Kass R. S. Mutation of an A-kinaseanchoring protein causes long-QT syndrome. Proc. Natl. Acad. Sci. USA, 104 (52), 20990–20995 (2007). DOI: 10.1073/pnas.0710527105
  13. 13. Anantharam A. and Abbott G. W. In: The hERG Cardiac Potassium Channel: Structure, Function and Long QT Syndrome. Novartis Foundation Symposium 266, Ed. by D. J. Chadwick and J. Goode (Novartis Foundation, 2005), pp. 100–112; discussion 112-7, 155-8.
  14. 14. Eldstrom J. and Fedida D. The voltage-gated channel accessory protein KCNE2: multiple ion channel partners, multiple ways to long QT syndrome. Expert Rev. Mol. Med., 13, e38 (2011). DOI: 10.1017/S1462399411002092
  15. 15. Takumi T., Moriyoshi K., Aramori I., Ishii T., Oiki S., Okada Y., Ohkubo H., and Nakanishi S. Alteration of channel activities and gating by mutations of slow ISK potassium channel. J. Biol. Chem., 266 (33), 22192–22198 (1991). DOI: 10.1016/S0021-9258(18)54553-1
  16. 16. Gage S. D. and Kobertz W. R. KCNE3 truncation mutants reveal a bipartite modulation of KCNQ1 K+ channels. J. Gen. Physiol., 124 (6), 759–771 (2004). DOI: 10.1085/jgp.200409114
  17. 17. Li P., Liu H., Lai C., Sun P., Zeng W., Wu F., Zhang L., Wang S., Tian C., and Ding J. Differential modulations of KCNQ1 by auxiliary proteins KCNE1 and KCNE2. Sci. Rep., 4, 4973 (2014). DOI: 10.1038/srep04973
  18. 18. Li Z., Li S., Luo M., Jhong J. H., Li W., Yao L., Pang Y., Wang Z., Wang R., Ma R., Yu J., Huang Y., Zhu X., Cheng Q., Feng H., Zhang J., Wang C., Hsu J. B., Chang W. C., Wei F. X., Huang H. D., and Lee T. Y. dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post-translational modifications. Nucl. Acids Res., 50 (D1), D471–D479 (2022). DOI: 10.1093/nar/gkab1017
  19. 19. Zhang M., Wang Y., Jiang M., Zankov D. P., Chowdhury S., Kasirajan V., and Tseng G. N. KCNE2 protein is more abundant in ventricles than in atria and can accelerate hERG protein degradation in a phosphorylation-dependent manner. Am. J. Physiol. Heart. Circ. Physiol., 302 (4), H910–H922 (2012). DOI: 10.1152/ajpheart.00691.2011
  20. 20. Liu L., Tian J., Lu C., Chen X., Fu Y., Xu B., Zhu C., SunY., Zhang Y., Zhao Y., and Li Y. Electrophysiological characteristics of the LQT2 syndrome mutation KCNH2-G572S and regulation by accessory protein KCNE2. Front. Physiol., 7, 650 (2016). DOI: 10.3389/fphys.2016.00650
  21. 21. Jordan M., Schallhorn A., and Wurm F. M. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucl. Acids Res., 24 (4), 596-601 (1996). DOI: 10.1093/nar/24.4.596
  22. 22. Sambrook J. and Russell D. W. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory Press, N.-Y., 2001).
  23. 23. Pogozheva I. D., Armstrong G. A., Kong L., Hartnagel T. J., Carpino C. A., Gee S. E., Picarello D. M., Rubin A. S., Lee J., Park S., Lomize A. L., and Im W. Comparative molecular dynamics simulation studies of realistic eukaryotic, prokaryotic, and archaeal membranes. J. Chem. Inf. Model., 62 (4), 1036–1051 (2022). DOI: 10.1021/acs.jcim.1c01514
  24. 24. Miranda W. E., Guo J., Mesa-Galloso H., Corradi V., Lees-Miller J. P., Tieleman D. P., Duff H. J., and Noskov S. Y. Lipid regulation of hERG1 channel function. Nature Commun., 12 (1), 1409 (2021). DOI: 10.1038/s41467-021-21681-8
  25. 25. Lomize M. A., Pogozheva I. D., Joo H., Mosberg H. I., and Lomize A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucl. Acids Res., 40 (Database issue), D370–376 (2012). DOI: 10.1093/nar/gkr703
  26. 26. Jo S., Kim T., Iyer V. G., and Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem., 29 (11), 1859–1865 (2008). DOI: 10.1002/jcc.20945
  27. 27. Humphrey W., Dalke A., and Schulten K. VMD: visual molecular dynamics. J. Mol. Graph., 14 (1), 33–38 (1996). DOI: 10.1016/0263-7855(96)00018-5
  28. 28. Olesen M. S., Andreasen L., Jabbari J., Refsgaard L., Haunso S., Olesen S. P., Nielsen J. B., Schmitt N., and Svendsen J. H. Very early-onset lone atrial fibrillation patients have a high prevalence of rare variants in genes previously associated with atrial fibrillation. Heart Rhythm, 11 (2), 246–251 (2014). DOI: 10.1016/j.hrthm.2013.10.034
  29. 29. Nielsen J. B., Bentzen B. H., Olesen M. S., David J. P., Olesen S. P., Haunso S., Svendsen J. H., and Schmitt N. Gain-of-function mutations in potassium channel subunit KCNE2 associated with early-onset lone atrial fibrillation. Biomark Med., 8 (4), 557–570 (2014). DOI: 10.2217/bmm.13.137
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека