RAS BiologyБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

Selenium as a Protector Against Hydrogen Peroxide Oxidative Degradation of Heme of Hemoglobin without the Glutathione Peroxidase Mechanism

PII
S0006302925010124-1
DOI
10.31857/S0006302925010124
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
104-111
Abstract
The protective effect of sodium selenite (Na2SeO3) on the oxidative degradation of hemoglobin induced by hydrogen peroxide (H2O2) was studied by recording the resulting two fluorescent products of heme breakdown (λex = 321 nm, λem = 460 nm) and (λex = 465 nm, λem = 525 nm). It has been established that sodium selenite (Na2SeO3) inhibits the development of oxidative modification of hemoglobin (depletion of oxyhemoglobin, accumulation of methemoglobin and ferrylhemoglobin), which is reflected in a noticeable 20–30% decrease in fluorescence peaks, reflecting the oxidative destruction of heme in the absence of the contribution of antiperoxide enzymes (catalase, glutathione peroxidase, peroxiredoxin-2) in Н2О2 utilization. This raises the question of the independent AO significance of selenium in hemoglobin, in its protection from peroxide effects without the GPX mechanism of Н2О2 utilization.
Keywords
пероксид водорода селен селенит натрия флуоресценция глутатионпероксидаза эритроциты
Date of publication
24.10.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Moller M. N., Orrico F., Villar S. F., Lopez A. C., Silva N., Donze M., Thomson L., and Denicola A. Oxidants and Antioxidants in the Redox Biochemistry of Human Red Blood Cells. ACS Omega, 8 (1), 147–168 (2023). DOI: 10.1021/acsomega.2c06768
  2. 2. Lapinski R., Siergiejuk M., Worowska A., and Gasko M. Oxidants and antioxidants of erythrocytes. Prog. Health. Sci., 4 (1), 211–219 (2014).
  3. 3. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol., 4, 180–183 (2015). DOI: 10.1016/j.redox.2015.01.002
  4. 4. Flohe L. Looking back at the early stages of redox biology. Antioxidants, 9 (12), 1254 (2020). DOI: 10.3390/antiox9121254
  5. 5. Low F. M., Hampton M. B., and Winterbourn C. C. Peroxiredoxin 2 and peroxide metabolism in the erythrocyte Antioxid. Redox Signal., 10 (9), 1621–1630 (2008). DOI: 10.1089/ars.2008.2081
  6. 6. Sies H. Role of metabolic H2O2 generation: Redox signaling and oxidative stress. J. Biol. Chem., 289 (13), 8735–8741 (2014). DOI: 10.1074/jbc.R113.544635
  7. 7. Rocha S., Gomes D., Lima M., Bronze-da-Rocha E., and Santos S. A. Peroxiredoxin 2, glutathione peroxidase, and catalase in the cytosol and membrane of erythrocytes under H2O2-induced oxidative stress. Free Radic. Res., 49 (8), 990 (2015). DOI: 10.3109/10715762.2015.1028402
  8. 8. Winterbourn C. C. Protection by ascorbate against acetylphenylhydrazine‐induced Heinz body formation in glucose‐6‐phosphate dehydrogenase deficient erythrocytes. Br. J. Haematol., 41 (2), 245–252 (1979). DOI: 10.1111/j.1365-2141.1979.tb05853.x
  9. 9. Nagababu E. and Rifkind J. M. Reaction of hydrogen peroxide with ferrylhemoglobin: superoxide production and heme degradation. Biochemistry, 39 (40), 12503–12511 (2000). DOI: 10.1021/bi992170y
  10. 10. Nagababu E. and Rifkind J. M. Heme degradation by reactive oxygen species. Antioxid. Redox Signal., 6 (6), 967–978 (2004). DOI: 10.1089/ars.2004.6.967
  11. 11. Nagababu E. and Rifkind J. M. Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide. Biochem. Biophys. Res. Commun., 247 (3), 592–596 (1998). DOI: 10.1006/bbrc.1998.8846
  12. 12. Nagababu E. and Rifkind J. M. Heme degradation during autoxidation of oxyhemoglobin. Biochem. Biophys. Res. Commun., 273 (3), 839–845 (2000). DOI: 10.1006/bbrc.2000.3025
  13. 13. Nagababu E., Chrest F. J., and Rifkind J. M. The origin of red cell fluorescence caused by hydrogen peroxide treatment. Free Radic. Biol. Med., 29 (7), 659–663 (2000). DOI: 10.1016/s0891-5849(00)00348-8
  14. 14. Hongoh M., Haratake M., Fachigame N., and Nakayama N. A thiol-mediated active membrane transport of selenium by erythroid anion exchanger 1 protein. Dalton Trans., 41 (24), 7340–7349 (2012). DOI: 10.1039/c2dt30707c
  15. 15. Huseynova S. Ya. Oxidative metabolism of sodium selenite in isolated human erythrocytes in vitro. Biomedicine (Azerbaijan), 17 (3), 18−23 (2019).
  16. 16. Arner E. S. J. Selenoproteins – What unique properties can arise with selenocysteine in place of cysteine? Exp. Cell Res., 316 (8), 1296–1303 (2010). DOI: 10.1016/j.yexcr.2010.02.032
  17. 17. Nagababu E., Chrest F. J., and Rifkind J. M. Hydrogenperoxide-induced heme degradation in red blood cells: the protective roles of catalase and glutathione peroxidase. Biochim Biophys Acta, 1620 (1–3), 211–217 (2003). DOI: 10.1016/s0304-4165(02)00537-8
  18. 18. Гусейнов Т. М., Яхъяева Ф. Р. и Гулиева Р. Т. Влияние селена на устойчивость гемоглобина к фотоокислительным процессам. Укр. биохим. журн., 84 (2), 53–60 (2012).
  19. 19. Гусейнов Т. М. и Яхъяева Ф. Р. Cелен как антиокислительный протектор в эритроцитах (Lambert Acad. Publ., 2014).
  20. 20. Padmaja K. and Prasad A. R. Selenium altered regulation of heme biosynthesis in chick embryos. Drug Chem. Toxicol., 16 (4), 395–408 (1993). DOI: 10.3109/01480549308998229
  21. 21. Padmaja K., Ramamurthi R., and Prasad A. R. Inhibitory effect of selenium on enzymes involved in heme biosynthetic pathway in chick embryos. J. Enzyme Inhib., 11 (1), 1–11 (1996). DOI: 10.3109/14756369609038217
  22. 22. Widmer C. C., Pereira C. P., Gehrig P., Vallelian F., Scoedon G., Buehler P. W., and Schaer D. J. Hemoglobin can attenuate hydrogen peroxide-induced oxidative stress by acting as an antioxidative peroxidase. Antioxid. Redox Signal., 12 (2), 185 (2010). DOI: 10.1089/ars.2009.2826
  23. 23. Beilstein M.A. and Whanger P. D. Distribution of selenium and glutathione peroxidase in blood fractions from humans, rhesus and squirrel monkeys, rats and sheep. J. Nutr., 113 (11), 2138–2146 (1983). DOI: 10.1093/jn/113.11.2138
  24. 24. Whanger P. D. Selenocompounds in plants and animals and their biological significance. J. Am. Coll. Nutr., 21 (3), 223–232 (2002) DOI: 10.1080/07315724.2002.10719214
  25. 25. Варламова Е. Г. Микроэлемент селен: уникальные свойства, встречаемость в природе, ключевые функции селен-содержащих соединений, роль в здоровье (Из-во «КноРус», М., 2024).
  26. 26. Shukurlu Y. H. and Huseynov T. M., Increased morbidity and its possible link to impaired selenium status. In: Selenium and Human Health, Ed. by V. Gelen, A. Kara. and A. Kükürt (London, UK, 2023), Chapt. 7. DOI: 10.5772/intechopen.110848, 103
  27. 27. Vitturi D. A., Sun C. W., Harper V. M., ThrashWilliams B., Cantu-Medellin N., Chacko B. K., Peng N., Dai Y., Wyss J. M., Townes T., and Patel R. P. Antioxidant functions for the hemoglobin β93 cysteine residue in erythrocytes and in the vascular compartment in vivo. Free Radic. Biol. Med., 55, 119–129 (2013). DOI: 10.1016/j.freeradbiomed.2012.11.003
  28. 28. Kassa T., Strader M. B., Nakagawa A., Zapol W. M., and Alayash A. I. Targeting βCys93 in hemoglobin S with an antisickling agent possessing dual allosteric and antioxidant effects. Metallomics, 9 (9), 1260–1270 (2017). DOI: 10.1039/c7mt00104e
  29. 29. Alayash A. I. βCysteine 93 in human hemoglobin: a gateway to oxidative stability in health and disease. Lab. Invest., 101 (1), 4–11 (2021). DOI: 10.1038/s41374-020-00492-3
  30. 30. Iwata H., Matsukami J., and Nakaya S. Effect of selenite on drug-induced methemoglobinemia in rats. Biochem. Pharmacol., 28 (14), 2209–2211 (1979). DOI: 10.1016/0006-2952(79)90206-5
  31. 31. Wilsdrow G., Doring K., and Solomon R. In: Proc. 6th Int. Trace Element Symp., Ed. by M. Anke (Leipzig, 1989), p. 851.
  32. 32. Simoni J., Simoni G., Garcia E. L., Prien S. D., Tran R. M., Feola М., and Shires G. T. Protective effect of selenium on hemoglobin mediated lipid peroxidation in vivo. Artif. Cells Blood Substit. Biotechnol., 23 (4), 469–486 (1995). DOI: 10.3109/10731199509117963
  33. 33. Baldwin A. N., Wiley E. B., and Alayash A. Differential effects of sodium selenite in reducing tissue damage caused by three hemoglobin-based oxygen carriers. J. Appl. Physiol., 96 (3), 893–903 (2004). DOI: 10.1152/japplphysiol.00615.2003
  34. 34. Nyberg-Swenson B. E. The selenium link: the missing link in our understanding of biochemical trigger reactions? Med. Hypotheses, 52 (2), 125–131 (1999). DOI: 10.1054/mehy.1997.0633
  35. 35. Гусейнов Т. М., Гулиева Р. Т. и Яхъяева Ф. Р. Селен как антиокислительная «примесь» в гемоглобине. В сб. Матер. III Междунар. конф. «Химия, структура и функция биомолекул» (Минск, Беларусь, 2008), с. 89
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library