RAS BiologyБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

Size Characteristics and Mechanisms of Toxic Action of Selenium, Cobalt, and Silver Nanoparticles on Mitochondria of the Liver of Rats

PII
S0006302925010134-1
DOI
10.31857/S0006302925010134
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
112-121
Abstract
Nanosized materials are widely used in biomedical nanotechnologies, but the mechanisms of toxic effects of metal and non-metal nanoclusters remain unclear. The aim of this work is to evaluate the size characteristics and mechanisms of toxic action of silver, selenium, and cobalt nanoparticles at the level of isolated mitochondria. Using the laser ablation method, silver (rounded, ~10–20 nm and ~50 nm), cobalt (cubic and prismatic, ~100–200 nm), and selenium (spherical, ~20–30 nm and 135–180 nm) nanoparticles with different spectral characteristics and capable of forming conglomerates were obtained. Silver, cobalt, and selenium nanoparticles (0.1–10 μg/ml) effectively inhibited the respiratory activity of isolated rat liver mitochondria by disrupting the coupling of oxidation and phosphorylation, which was accompanied by a drop in the mitochondrial membrane potential. The uncoupling effect of nanoparticles may be associated with the transfer of electrons from the electron transport chain of mitochondria to the positively charged surface of nanoparticles and depends on the size and material of the nanoparticles.
Keywords
наночастицы токсическое действие митохондриальные мембраны ингибирование респираторная активность
Date of publication
24.10.2025
Year of publication
2025
Number of purchasers
0
Views
19

References

  1. 1. Gautam A., Singh D., and Vijayaraghwan R. Dermal exposure of nanoparticles: an understanding. J. Cell. Tissue Res., 2 (1), 2703–2708 (2011).
  2. 2. Teodoro J. S., Simões A. M., Duarte F. V., Rolo A. P., Murdoch R. C., Hussain S. M., and Palmeira C. M. Assessment of the toxicity of silver nanoparticles in vitro: a mitochondrial perspective. Toxicol. in vitro, 25 (3), 664–70 (2011). DOI: 10.1016/j.tiv.2011.01.004
  3. 3. Natsuki J., Natsuki T., and Hashimoto Y. A review of silver nanoparticles: synthesis methods, properties and applications. Int. J. Materials Sci. & Applications, 4 (5), 325–332 (2015). DOI: 10.11648/j.ijmsa.20150405.17
  4. 4. Berger S., Berger M., Bantz C., Maskos M., and Wagner E. Performance of nanoparticles for biomedical applications: The in vitro/in vivo discrepancy. Biophysics Rev., 3 (1), 011303 (2022). DOI: 10.1063/5.0073494
  5. 5. Keservani R. K., Kesharwani R. K., and Sharma A. K. Advances in Novel Formulations for Drug Delivery (WileyScrivener, 2023).
  6. 6. Tsuji T., Iryo K., Watanabe N., and Tsuji M. Preparation of silver nanoparticles by laser ablation in solution. Appl. Surf. Sci., 202, 80–85 (2002).
  7. 7. Wongrakpanich A., Geary S. M., Joiner M.-L. A., Anderson M. E., and Salem A. K. Mitochondria-targeting particles. Nanomedicine, 9, 2531–2543 (2014). DOI: 10.2217/nnm.14.161
  8. 8. Daniel M. C. and Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 104 (1), 293–346 (2004). DOI: 10.1021/cr030698+
  9. 9. Rufino A. T., Ramalho A., Sousa A., de Oliveira J. M. P. F., Freitas P., Gómez M. A. G., Piñeiro-Redondo Y., Rivas J., Carvalho F., Fernandes E., and Freitas M. Protective role of flavonoids against intestinal pro-inflammatory effects of silver nanoparticles. Molecules, 26, 6610 (2021). DOI: 10.3390/molecules26216610
  10. 10. Buchke S., Sharma M., Bora A., Relekar M., Bhanu P., and Kumar J. Mitochondria-targeted, nanoparticle-based drug-delivery systems: therapeutics for mitochondrial disorders. Life, 12 (5), 657 (2022). DOI: 10.3390/life12050657
  11. 11. Довнар Р. И., Смотрин С. М., Ануфрик С. С., Соколова Т. Н., Анучин С. Н. и Иоскевич Н. Н. Антибактериальные и физико-химические свойства наночастиц серебра и оксида цинка. Журн. Гродненского гос. мед. ун-та, 20 (1), 98–107 (2022). DOI: 10.25298/2221-8785-2022-20-1-98-107
  12. 12. Varlamova E. G., Gudkov S. V., Plotnikov E. Y., and Turovsky E. A. Size-dependent cytoprotective effects of selenium nanoparticles during oxygen-glucose deprivation in brain cortical cells. Int. J. Mol. Sci., 23 (13), 7464 (2022). DOI: 10.3390/ijms23137464
  13. 13. Vodyashkin A. A., Kezimana P., Prokonov F. Y., Vasilenko I. A., and Stanishevskiy Y. M. Current methods for synthesis and potential applications of cobalt nanoparticles: A review. Crystals, 12 (2), 272 (2022). DOI: 10.3390/cryst12020272
  14. 14. Станишевская И. Е., Стойнова А. М., Марахова А. И. и Станишевский Я. М. Наночастицы серебра: получение и применение в медицинских целях. Разработка и регистрация лекарственных средств, 14 (1), 66–69 (2016).
  15. 15. Yang L. Y., Gao J. L., Gao T., Dong P., Ma L., Jiang F. L., and Liu Y. Toxicity of polyhydroxylated fullerene to mitochondria. J. Hazard Mater., 301, 119–126 (2016). DOI: 10.1016/j.jhazmat.2015.08.046
  16. 16. Ануфрик С. С., Анучин С. Н. и Сергиенко И. Г. Морфология поверхностных наноструктур цветных металлов, осажденных из растворов аблированных наночастиц. Веснік Гродзенскага дзяржаўнага ўніверсітэта імя Янкі Купалы. Сер. 6. Тэхніка, 11 (1), 59–65 (2021).
  17. 17. Dovnar R., Smotrin S., Anufrik S., Anuchin S., Dovnar I., and Iaskevich N. Copper and selenium nanoparticles as a new tool against antibiotic-resistant pathogenic microorganisms. Khirurgiya. Vostochnaya Evropa – Surgery. Eastern Europe. 11 (3), 315–328 (2022). DOI: 10.34883/pi.2022.11.3.013
  18. 18. Позняк С. С., Жильцова Ю. В. и Лосева Л. П. МВИ.МН 4092-2011 «Методика выполнения измерений массовой доли химических элементов бария, железа, кадмия, калия, кальция, кобальта, марганца, меди, никеля, свинца, серы, стронция, сурьмы, титана, хлора, хрома, цинка, циркония в почве и донных отложениях методом рентгено-флуоресценции с использованием спектрометра энергий рентгеновского излучения СЕР-01» (МГЭУ им. А.Д. Сахарова, Мн., 2011).
  19. 19. Johnson D. and Lardy H. Isolation of rat liver and kidney mitochondria. Methods Enzymol., 10, 94–96 (1967). DOI: 10.1016/0076-6879(67)10018-9
  20. 20. Schummer U., Schiefer H.-G., and Gerhardt U. Mycoplasma membrane potentials determined by potentialsensitive fluorescent dyes. Curr. Microbiol., 2, 191–194 (1979).
  21. 21. Akerman K. E. and Wikström M. K. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett., 6 (2), 191–197 (1976).
  22. 22. Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193 (1), 265–275 (1951).
  23. 23. Santhosh P. B., Penič S., Genova J., Iglič A., KraljIglič V., and Ulrih N. P. A study on the interaction of nanoparticles with lipid membranes and their influence on membrane fluidity. J. Physics: Conf. Ser., 398, 012034 (2012). DOI: 10.1088/1742-6596/398/1/012034
  24. 24. Costa C. S., Ronconi J. V. V., Daufenbach J. F., Gonçalves C. L., Rezin G. T., Streck E. L., and da Silva Paula M. M. In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol. Cell Biochem., 342 (1–2), 51–56 (2010). DOI: 10.1007/s11010-010-0467-9
  25. 25. Dong P., Li J. H., Xu S. P., Wu X. J., Xiang X., Yang Q. Q., Jin J. C., Liu Y., and Jiang F. L. Mitochondrial dysfunction induced by ultra-small silver nanoclusters with a distinct toxic mechanism. J. Hazard Mater., 308, 139–148 (2016). DOI: 10.1016/j.jhazmat.2016.01.017
  26. 26. Zhuang Y., Li L., Feng L., Wang S., Su H., Liu H., Liu H., and Wu Y. Mitochondrion-targeted selenium nanoparticles enhance reactive oxygen species-mediated cell death. Nanoscale, 12, 1389–1396 (2020). DOI: 10.1039/C9NR09039H
  27. 27. Chen J., Chen C., Wang N., Wang C., Gong Z., Du J., Lai H., Lin X., Wang W., Chang X., Aschner M., Guo Zh., Wu S., Li H., and Zheng F. Cobalt nanoparticles induce mitochondrial damage and β-amyloid toxicity via the generation of reactive oxygen species. NeuroToxicol., 95, 155–163 (2023). DOI: 10.1016/j.neuro.2023.01.010
  28. 28. Zheng F., Luo Z., Lin X., Wang W., Aschner M., Cai P., Wang Y. L., Shao W., Yu G., Guo Z., Wu S., and Li H. Intercellular transfer of mitochondria via tunnelling nanotubes protects against cobalt nanoparticle-induced neurotoxicity and mitochondrial damage. Mol. Pharmacol. 15 (10), 1358–1379 (2021).
  29. 29. Lienemann M. Molecular mechanisms of electron transfer employed by native proteins and biological-inorganic hybrid systems. Comput. Structur. Biotechnol. J., 19, 206–213 (2021). DOI: 10.1016/j.csbj.2020.12.004
  30. 30. Fehaid A. and Taniguchi A. The double-edged effect of silver nanoparticles is determined by their physical characteristics. Nano Biomedicine, 11 (2), 49–56 (2019). DOI: 10.11344/nano.11.49
  31. 31. Liu W., Wu Y., Wang C., Li H. C., Wang T., Liao C. Y., Cui L., Zhou Q. F., Yan B., and Jiang G. B. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology, 4 (3), 319–330 (2010). DOI: 10.3109/17435390.2010.483745
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library