RAS BiologyБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

Nitrosonium Cation as a Nitroprusside Constituent Determining Its Cytotoxicity

PII
S0006302925010142-1
DOI
10.31857/S0006302925010142
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
122-128
Abstract
It has been demonstrated that nitrosonium cation (NO+) transformation as a constituent of sodium nitroprusside into NO molecule under action of sodium dithionite as a strong reducer did not result in full supression of cytotoxic activity of nitroprusside solution as NO+ donor on the culture of MCF-7 tumour cells. As a matter of fact, NO molecules and Fe2+ ions released from SNP at this conditions formed dinitrosyl iron complexes with thiol-containing ligands (thiol-containing proteins or thiosulphate anions appeared from decomposed dithionite).The half of nitrosyl ligands in the complexes represented also as in nitroprusside in cytotoxic NO+ form. Nevertheless because the amount of dinitrosyl iron complexes was three times less than that of initial nitroprusside the cytotoxic effect of nitroprusside solution as NO+ donors sharply decreased under action of dithionite on nitroprusside.
Keywords
нитропруссид катион нитрозония динитрозильные комплексы железа цитотоксикоз
Date of publication
24.10.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Ignarro L. Nitric oxide biology and pharmacology (Acad. Press, Zurich, Switzerland, 2000).
  2. 2. Ascenzi P., di Masi A., Sciore A. C., and Clementi E., Peroxynitrite – as ugly biofactor? Biofactors, 36 (4), 264–273 (2010). DOI: 10.1002/biof.103
  3. 3. Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA, 115 (23), 5839–5848 (2018). DOI: 10.1073/pnas.1804932115
  4. 4. Khan S., Kayahara M., Joashi U., Mazarakis N. D., Sarraf C., Edwards A. D., Hughes M. N., and Mehmet H., Differential induction of apoptosis in Swiss 3T3 cells by nitrix oxide and the nitrosonium cation. J. Cell Sci., 110 (18), 2315–2322 (1997). DOI: 10.1242/jcs.110.18.2315
  5. 5. Kleschyov A. L., Stand S., Schmitt S., Gottfried D., Skatchkov V., Sjakste N., Daiber M., Umansky V., and Münzel T. Dinitrosyl-iron triggers apoptosis in Jurkat cells despite overexpression of Bcl-2. Free Radic. Biol. Med., 40 (8), 1340–1348 (2006). DOI: 10.1016/j.freeradbiomed.2005.12.001
  6. 6. Ванин А. Ф. и Ткачев Н. А. Динитрозильные комплексы железа с тиолсодержащими лигандами как источники универсальных цитотоксинов – катионов нитрозония. Биофизика, 68 (3), 329–340 (2023). DOI: 10.31857/S0006302923030018
  7. 7. Bates J. N., Baker M. T., Guerra R. Jr., and Harrison D. G. Nitric oxide generation from nitroprusside by vascular tissue. Evidence that reduction of the nitroprusside anion and cyanide loss are required. Biochem. Pharmacol., 42 (Suppl.), S156–S165 (1991). DOI: 10.1016/0006-2952(91)90406-u
  8. 8. Hilleger W. B., Dean N. A., Rhinehart R. G., and Myers P. D. Treatment of non-reflow and impaired flow with nitric oxide donor nitroprusside following per cutaneous coronary intervention initial human clinical experience. J. Am. Coll. Cardiol., 37, 1335–1347 (2001).
  9. 9. Lee M. A., Joo K. R., Kim H. K., Kim B. D., and Ahn C. K. The effect of sodium nitroprusside on mean arterial pressure and heart rate in anesthetized patients. Korean J. Anesthesiol., 13 (4), 366–380 (1980). DOI: 10.4097/kjae.1980.13.4.366
  10. 10. Garatti L. and Frea S. Sodium nitroprusside in acute heart failure: A multicenter historic cohort study. Int. J. Cardiol., 369, 37–44 (2022). DOI: 10.1016/j.ijcard.2022.08.009
  11. 11. Zoupa E. and Pitsikas N. The nitric oxide (NO) donor sodium nitroprusside (SNP) and its potential for the schizophrenia therapy: Lights and shadows. Molecules, 26 (11), 3196–3207 (2021). DOI: 10.3390/molecules26113196
  12. 12. Chandna S. Single-cell gel electrophoresis assay monitors precise kinetics of DNA fragmentation induced during programmed cell death. Cytometry A, 61 (2), 127–133 (2004). DOI: 10.1002/cyto.a.20071
  13. 13. Atale N., Gupta S., Yadaev U., and Rani V. Cell-death assessment by fluorescent and non-fluorescent cytosolic and nuclear staining techniques. J. Microscopy, 255 (1), 7–19 (2014). DOI: 10.1111/jmi.12133
  14. 14. van Voorst J. D. W. and Hemmerich P. Electron spin resonance of Fe(CN)5NO2- and Fe(CN)5NOH2-. J. Chem.
  15. 15. Phys., 45 (11), 3914–3920 (1966). DOI: 10.1063/1.1727437
  16. 16. Vanin A. F., Serezhenkov V. A., Mikoyan V. D., and Genkin M. V. The 2.03 signal as an indicator of dinitrosyl-iron complexes with thiol-containing ligands. Nitric Oxide Biol. Chem., 2 (4), 224–234 (1998). DOI: 10.1006/niox.1998.0180
  17. 17. Бурбаев Д. Ш., Ванин А. Ф., Блюменфельд Л. А. Электронная и пространственная структура парамагнитных динитрозильных комплексов железа. Журн. структ. химии, 12, 252–256 (1971).
  18. 18. Vanin A. F., Malenkova I. V., and Serezhenkov V. A. Iron catalyzes both decomposition and synthesis of S-nitrosothiols: optical and EPR studies. Nitric Oxide Biol. Chem., 1 (3), 191–203 (1997). DOI: 10.1006/niox.1997.0122
  19. 19. Vanin A. F. and Burbaev D. Sh. Electronic and spatial structures of water-soluble dinitrosyl iron ciomplexes with thiol-containing ligands underlying their activity to act as nitric oxide and nitrosonium ions donors. Biophys. J., 14, 878236 (2011). DOI: 10.1155/2011/878236
  20. 20. Vanin A. F., Tronov V. A., and Borodulin R. R. Nitrosonium cation as a cytrotoxic component of dinitrosyl iron complexes with thiol-containing ligands (based on the experimental work on MCF-7 hyman breast cancer cell culture). Cell Biochem. Biophys., 79 (1), 93–102 (2021). DOI: 10.1007/s12013-020-00962-x
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library