RAS BiologyБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

Thermal Processes Associated with Electrophoresis under Conditions of High Ionic Strength

PII
S0006302925010162-1
DOI
10.31857/S0006302925010162
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
137-143
Abstract
Temperature heterogeneity of the electrophoretic solution, dynamically changing during electrophoresis in the gel platform area, was demonstrated by us earlier. In order to understand the reasons for this effect, we used U-shaped inserts in the wells of the electrophoretic chamber, protruding above the surface of the electrophoretic solution, but not affecting the current flow. The conducted study showed that the migration of heated masses of solution is caused by different rates of hydrogen and oxygen production on platinum electrodes. Using technique of real-time thermal imaging, it was demonstrated that in the presence of U-shaped inserts, heating was uniform up to 7°С throughout the entire volume of the solution located above the gel platform. Heating of the liquid in the well area occurred with less dynamics and was not identical. The heating of the liquid in the cathode well occurs insignificantly (only 1.5°C), and at the anode the increase is 2.5°С. We believe that temperature homogeneity will be of significant importance for reducing the variability of the results obtained by the Comet assay (DNA comet) method on preparations subjected to alkaline electrophoresis.
Keywords
нуклеоиды ДНК-кометы щелочной электрофорез ИК-термограммы
Date of publication
24.10.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Khizhnyak E. P., Sirota N. P., Kuznetsova E. A., Khizhnyak L. N., and Sirota T. V. Heating and convection are associated with alkaline electrophoresis. Electrophoresis, 42 (9–10), 1153–1157 (2021). DOI: 10.1002/elps.202000337
  2. 2. Cordelli E., Bignami M., and Pacchierotti F. Comet assay: A versatile but complex tool in genotoxicity testing. Toxicol. Res., 10 (1), 68–78 (2021). DOI: 10.1093/toxres/tfaa093
  3. 3. Bajpayee M., Kumar A., and Dhawan A. Chapter 1: The Comet Assay: A Versatile Tool for Assessing DNA Damage. In: The comet assay in toxicology, Ed. by D. Anderson and A. Dhawan, 2nd ed. (The Royal Society of Chemistry, Cambridge, UK, 2016), ch. 1, pp. 3–64. DOI: 10.1039/9781782622895-00001
  4. 4. Olive P. L. and Banáth J. P. The comet assay: A method to measure DNA damage in individual cells. Nature Protocols, 1 (1), 23–29 (2006). DOI: 10.1038/nprot.2006.5
  5. 5. Ostling O. and Johanson K. J. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun., 123 (1), 291–298 (1984). DOI: 10.1016/0006-291x(84)90411-x
  6. 6. Kuznetsova E. A., Sirota N. P., Mitroshina I. Y., Pikalov V. A., Smirnova E. N., Rozanova O. M., Glukhov S. I., Sirota T. V., and Zaichkina S. I. DNA damage in blood leukocytes from mice irradiated with accelerated carbon ions with an energy of 450MeV/nucleon. Int. J. Radiat. Biol., 96, 1245–1253 (2020).
  7. 7. Møller P., Azqueta A., Collia M., Bakuradze T., Richling E., Bankoglu E. E., Stopper H., Bastos V. C., Langie S. A. S., Jensen A., Ristori S., Scavone F., Giovannelli L., Wojewódzka M., Kruszewski M., Valdiglesias V., Laffon B., Costa C., Costa S., Teixeira J. P., Marino M., Del Bo C., Riso P., Zheng C., Shaposhnikov S., Collins A. Inter-laboratory variation in measurement of DNA damage by the alkaline comet assay in the hCOMET ring trial. Mutagenesis, 38, 283–294 (2023). DOI: 10.1093/mutage/gead014
  8. 8. Owiti N. A., Kaushal S., Martin L., Sly J., Swartz C. D., Fowler J., Corrigan J. J., Recio L., and Engelward B. P. Using the hepaCometChip Assay for broad-spectrum DNA damage analysis. Current Protocols, 2, e563 (2022). DOI: 10.1002/cpz1.563
  9. 9. Singh N. P., McCoy M. T., Tice R. R., and Schneider E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 175 (1), 184–191 (1988). DOI: 10.1016/0014-4827(88)90265-0
  10. 10. Lafleur M. V., van Heuvel M., Woldhuis J., and Loman H. Alkali-labile sites and post-irradiation effects in single-stranded DNA induced by OH radicals. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 33 (3), 273–281 (1978). DOI: 10.1080/09553007814550151
  11. 11. Lafleur M. V., Woldhuis J., and Loman H. Alkali-labile sites and post-irradiation effects in gamma-irradiated biologically active double-stranded DNA in aqueous solution. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 36 (3), 241–247 (1979). DOI: 10.1080/09553007914551011
  12. 12. Сирота Н. П. и Гапеев А. Б. Набор и способ для приготовления многослойных агарозных блоков на поверхности мини-стекол для микроскопии. Патент на изобретение RU 2558229 C2, 27.07.2015. Заявка № 2013117949/10 от 19.04.2013.
  13. 13. Kuznetsova E. A., Dyukina A. R., Chernigina I. A., and Sirota N. P. A method of low-temperature storing of agarose slides with lysed cells. Bull. Exp. Biol. Med., 155 (6), 757–759 (2013). DOI: 10.1007/s10517-013-2245-7
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library