- PII
- S0006302925020031-1
- DOI
- 10.31857/S0006302925020031
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 2
- Pages
- 240-250
- Abstract
- The temperature dependence of the tryptophan fluorescence lifetime in human and bovine serum albumin in an aqueous solution and glycerol in the temperature range of –170°C to 20°C was studied. A model of forward and reverse electronic transitions in the tryptophan molecule from the excited state to the ground state and to the charge transfer state was constructed. Three main spectral regions of tryptophan fluorescence with different behavior of temperature dependences of transition rates from the excited state of tryptophan to the state with charge transfer were determined. It was found that the dynamics of the hydrogen bonding system in the selected spectral regions had a determining influence on the character of changes in the duration of tryptophan fluorescence. The nonlinear dependence of intramolecular transition rates on temperature found in the work is determined by the interaction of tryptophan molecules with its microenvironment. The rearrangements in the hydrogen bonding system of albumin protein containing tryptophan molecule have a determining influence on the processes of excitation deactivation in tryptophan.
- Keywords
- человеческий сывороточный альбумин бычий сывороточный альбумин триптофан флуоресценция
- Date of publication
- 24.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 17
References
- 1. Dashnau J. L., Zelent B., and Vanderkooi J. M. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations. Biophys. Chem., 71, 114 (2005). DOI: 10.1016/j.bpc.2004.10.003
- 2. Schlamadinger D. E., Gable J. E., and Kim J. E. Hydrogen bonding and solvent polarity markers in the UV resonance Raman spectrum of tryptophan: application to membrane proteins. J. Phys. Chem. B, 113, 14769 (2009). DOI: 10.1021/jp905473y
- 3. Burshtein E. A. Intrinsic protein luminescence as a tool for studying fast structural dynamics. Mol. Biol. (Moscow), 17, 455 (1983).
- 4. Knox P. P., Gorokhov V. V., Korvatovskiy B. N., Lukashev E. P., Goryachev S. N., Paschenko V. Z., and Rubin A. B. The effect of light and temperature on the dynamic state of Rhodobacter sphaeroides reaction centers proteins determined from changes in tryptophan fluorescence lifetime and P+QA – recombination kinetics. J. Photochem. Photobiol. B, 180, 140 (2018). DOI: 10.1016/j.jphotobiol.2018.01.027
- 5. Knox P. P., Korvatovskiy B. N., Gorokhov V. V., Goryachev S. N., Mamedov M. D., and Paschenko V. Z. Comparison of tryptophan fluorescence lifetimes in cyanobacterial photosystem I frozen in the light and in the dark. Photosynt. Res., 139, 441 (2019). DOI: 10.1007/s11120-018-0595-8
- 6. Szabo A. G. and Rayner D. M. Fluorescence decay of tryptophan conformers in aqueous solution. J. Am. Chem. Soc., 102, 554 (1980). DOI: 10.1021/ja00522a020
- 7. Lakowicz J. R. Principles of fluorescence spectroscopy, 3rd ed. (Springer, N.-Y., 2006). DOI: 10.1007/978-0-387-46312-4
- 8. Adams P. D., Chen Y., Ma K., Zagorski M. G., Sonnichsen F. D., McLaughlin M. L., and Barkley M. D. Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J. Am. Chem. Soc., 124, 9278 (2002). DOI: 10.1021/ja0167710
- 9. Ross J. A. and Jameson D. M. Time-resolved methods in biophysics. 8. Frequency domain fluorometry: applications to intrinsic protein fluorescence. Photochem. Photobiol. Sci., 7, 1301 (2008). DOI: 10.1039/b804450n
- 10. Knox P. P., Gorokhov V. V., Korvatovsky B. N., Grishanova N. P., Goryachev S. N., and Paschenko V. Z. Specific features of the temperature dependence of tryptophan fluorescence lifetime in the temperature range of –170 –20C. J. Photochem. Photobiol. A, 393, 112435 (2020). DOI: 10.1016/j.jphotochem.2020.112435
- 11. Gorokhov V. V., Knox P. P., Korvatovskiy B. N., Seyfullina N. Kh., Goryachev S. N., and Paschenko V. Z. Temperature dependence of tryptophan fluorescence lifetime in aqueous glycerol and trehalose solutions. Biochemistry (Moscow), 82, 1269 (2017). DOI: 10.1134/S0006297917110049
- 12. Paschenko V. Z., Gorokhov V. V., Korvatovsky B. N., Knox P. P., Grishanova N. P., and Goryachev S. N. A study of the temperature dependence of tryptophan fluorescence lifetime in the range of –170°С to +20°С in various solvents. Biophysics, 66, 385 (2021). DOI: 10.1134/S0006350921030143
- 13. Han K. L. and Zhao G. J. Hydrogen bonding and transfer in the excited state (John Wiley&Sons Ltd., Chichester, UK, 2011). DOI: 10.1002/9780470669143
- 14. Gorokhov V. V., Korvatovsky B. N., Knox P. P., Grishanova N. P., Goryachev S. N., Pashchenko V. Z., and Rubin A. B. Temperature dependence of tryptophan fluorescence lifetime as an indicator of its microenvironment dynamics. Dokl. Biochem. Biophys. (Moscow), 498, 170 (2021). DOI: 10.1134/S1607672921030030
- 15. Gorokhov V. V., Knox P. P., Korvatovsky B. N., Goryachev S. N., Paschenko V. Z., and Rubin A. B. Influence of the microenvironment dynamics of tryptophan on its fluorescence parameters at different temperature. Biophysics, 68, 503 (2023). DOI: 10.1134/S0006350923040061
- 16. Knox P. P., Lukashev E. P., Gorokhov V. V., Seifullina N. Kh., and Paschenko V. Z. Relaxation processes accompanying electron stabilization in the quinone acceptor part of Rb. sphaeroides reaction centers. J. Photochem. Photobiol. B., 189, 145 (2018). DOI: 10.1016/j.jphotobiol.2018.10.005
- 17. Gorokhov V. V., Knox P. P., Korvatovsky B. N., Lukashev E. P., Goryachev S. N., Paschenko V. Z., and Rubin A. B. Comparison of spectral and temporal fluorescence parameters of aqueous tryptophan solutions frozen in the light and in the dark. Chem. Phys., 571, 111919 (2023). DOI: 10.1016/j.chemphys.2023.111919
- 18. Doster W. The dynamical transition of proteins, concepts and misconceptions. Eur. Biophys. J., 37, 591 (2008). DOI: 10.1007/s00249-008-0274-3
- 19. Liu H., Zhang H., and Jin B. Fluorescence of tryptophan in aqueous solution. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 106, 54 (2013). DOI: 10.1016/j.saa.2012.12.065
- 20. Blinc R. and Zeks B. Soft modes in ferroelectrics and antiferroelectrics (Am. Elsevier Publ. Comp. Inc, N.-Y., 1974). DOI: 10.1088/0031-9112/27/3/038
- 21. Finkelstein A. V. and Ptitsyn O. B. Protein physics: A course of lectures (Elsevier Sci., 2016). DOI: 10.13140/RG.2.1.1319.8320
- 22. Wang H., Lin S., Allen J. P., Williams J. A. C., Blankert S., Laser C., and Woodbury N. W. Protein dynamics control the kinetics of initial electron transfer in photosynthesis. Science, 316, 747 (2007). DOI: 10.1126/science.1140030
- 23. Wang H., Lin S., Katilius E., Laser C., Allen J. P., Williams J. A. C., and Woodbury N. W. Unusual temperature dependence of photosynthetic electron transfer due to protein dynamics. J. Phys. Chem. B, 113, 818 (2009). DOI: 10.1021/jp807468c
- 24. Nicholson J. P., Wolmarans M. R., and Park G. R. The role of albumin in critical illness. Brit. J. Anaestesia, 85, 599 (2000). DOI: 10.1093/bja/85.4.599
- 25. Togashi D. M., Ryder A. G., McMahon D., Dunne P., and McManus J. Fluorescence study of bovine serum albumin and Ti and Sn oxide nanoparticles interactions. In: Diagnostic Optical Spectroscopy in Biomedicine IV, Ed. By D. Schweitzer and M. Fitzmaurice (Proc. of SPIE-OSA Biomedical Optics, 2007), vol. 6628, paper 6628_61. DOI: 10.1364/ECBO.2007.6628_61
- 26. Carter D. C. and Ho J. X. Structure of serum albumin. In: Advances in Protein Chemistry, Ed. by C. B. Anfinsen, J. T. Edsall, F. M. Richards, and D. S. Eisenberg (Acad. Press, San Diego, 1994), vol. 45, pp. 153–203. DOI: 10.1016/S0065-3233(08)60640-3
- 27. Bell K. L. and Brenner H. C. Phosphorescence and optically detected magnetic resonance study of the tryptophan residue in human serum albumin. Biochemistry, 21, 799 (1982). DOI: 10.1021/bi00533a034
- 28. Peterman B. F. and Laidler K. J. Study of reactivity of tryptophan residues in serum albumins and lysozyme by N-bromosuccinamide fluorescence quenching. Arch. Biochem. Biophys., 199, 158 (1980). DOI: 10.1016/0003-9861(80)90268-4
- 29. Vandewal K. Interfacial charge transfer states in condensed phase systems. Annu. Rev. Phys. Chem., 67, 113 (2016). DOI: 10.1146/annurev-physchem-040215-112144
- 30. Marcus R. A. and Sutin N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta, 811, 265 (1985). DOI: 10.1016/0304-4173(85)90014-X
- 31. Punyiczki M. and Rosenberg A. The effect of viscosity on the accessibility of the single tryptophan in human serum albumin. Biophys. Chem., 42, 93 (1992). DOI: 10.1016/0301-4622(92)80011-s
- 32. Moriyama Y., Ohta D., Hachiya K., Mitsui Y., and Takeda K. Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: a comparative study of the two and one tryptophan(s) of bovine and human albumins. J. Prot. Chem., 15, 265 (1996). DOI: 10.1007/BF01887115
- 33. Jeremias H. F., Lousa D., Hollmann A., Coelho A. C., Baltazar C. S., Seixas J. D., Marques A. R., Santos N. C., Romao C. C., and Soares C. M. Study of the interactions of bovine serum albumin with a molybdenum(II) carbonyl complex by spectroscopic and molecular simulation methods. PLoS One, 13 (9), e0204624 (2018). DOI: 10.1371/journal.pone.0204624
- 34. Ghisaidoobe A. B. T., and Chung S. J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Forster resonance energy transfer techniques. Int. J. Mol. Sci., 15, 22518 (2014). DOI: 10.3390/ijms151222518