RAS BiologyБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

Spectral and Kinetic Characteristics of Tryptophan Fluorescence in Human and Bovine Serum Albumin at Different Temperatures

PII
S0006302925020031-1
DOI
10.31857/S0006302925020031
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 2
Pages
240-250
Abstract
The temperature dependence of the tryptophan fluorescence lifetime in human and bovine serum albumin in an aqueous solution and glycerol in the temperature range of –170°C to 20°C was studied. A model of forward and reverse electronic transitions in the tryptophan molecule from the excited state to the ground state and to the charge transfer state was constructed. Three main spectral regions of tryptophan fluorescence with different behavior of temperature dependences of transition rates from the excited state of tryptophan to the state with charge transfer were determined. It was found that the dynamics of the hydrogen bonding system in the selected spectral regions had a determining influence on the character of changes in the duration of tryptophan fluorescence. The nonlinear dependence of intramolecular transition rates on temperature found in the work is determined by the interaction of tryptophan molecules with its microenvironment. The rearrangements in the hydrogen bonding system of albumin protein containing tryptophan molecule have a determining influence on the processes of excitation deactivation in tryptophan.
Keywords
человеческий сывороточный альбумин бычий сывороточный альбумин триптофан флуоресценция
Date of publication
24.10.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Dashnau J. L., Zelent B., and Vanderkooi J. M. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations. Biophys. Chem., 71, 114 (2005). DOI: 10.1016/j.bpc.2004.10.003
  2. 2. Schlamadinger D. E., Gable J. E., and Kim J. E. Hydrogen bonding and solvent polarity markers in the UV resonance Raman spectrum of tryptophan: application to membrane proteins. J. Phys. Chem. B, 113, 14769 (2009). DOI: 10.1021/jp905473y
  3. 3. Burshtein E. A. Intrinsic protein luminescence as a tool for studying fast structural dynamics. Mol. Biol. (Moscow), 17, 455 (1983).
  4. 4. Knox P. P., Gorokhov V. V., Korvatovskiy B. N., Lukashev E. P., Goryachev S. N., Paschenko V. Z., and Rubin A. B. The effect of light and temperature on the dynamic state of Rhodobacter sphaeroides reaction centers proteins determined from changes in tryptophan fluorescence lifetime and P+QA – recombination kinetics. J. Photochem. Photobiol. B, 180, 140 (2018). DOI: 10.1016/j.jphotobiol.2018.01.027
  5. 5. Knox P. P., Korvatovskiy B. N., Gorokhov V. V., Goryachev S. N., Mamedov M. D., and Paschenko V. Z. Comparison of tryptophan fluorescence lifetimes in cyanobacterial photosystem I frozen in the light and in the dark. Photosynt. Res., 139, 441 (2019). DOI: 10.1007/s11120-018-0595-8
  6. 6. Szabo A. G. and Rayner D. M. Fluorescence decay of tryptophan conformers in aqueous solution. J. Am. Chem. Soc., 102, 554 (1980). DOI: 10.1021/ja00522a020
  7. 7. Lakowicz J. R. Principles of fluorescence spectroscopy, 3rd ed. (Springer, N.-Y., 2006). DOI: 10.1007/978-0-387-46312-4
  8. 8. Adams P. D., Chen Y., Ma K., Zagorski M. G., Sonnichsen F. D., McLaughlin M. L., and Barkley M. D. Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J. Am. Chem. Soc., 124, 9278 (2002). DOI: 10.1021/ja0167710
  9. 9. Ross J. A. and Jameson D. M. Time-resolved methods in biophysics. 8. Frequency domain fluorometry: applications to intrinsic protein fluorescence. Photochem. Photobiol. Sci., 7, 1301 (2008). DOI: 10.1039/b804450n
  10. 10. Knox P. P., Gorokhov V. V., Korvatovsky B. N., Grishanova N. P., Goryachev S. N., and Paschenko V. Z. Specific features of the temperature dependence of tryptophan fluorescence lifetime in the temperature range of –170 –20C. J. Photochem. Photobiol. A, 393, 112435 (2020). DOI: 10.1016/j.jphotochem.2020.112435
  11. 11. Gorokhov V. V., Knox P. P., Korvatovskiy B. N., Seyfullina N. Kh., Goryachev S. N., and Paschenko V. Z. Temperature dependence of tryptophan fluorescence lifetime in aqueous glycerol and trehalose solutions. Biochemistry (Moscow), 82, 1269 (2017). DOI: 10.1134/S0006297917110049
  12. 12. Paschenko V. Z., Gorokhov V. V., Korvatovsky B. N., Knox P. P., Grishanova N. P., and Goryachev S. N. A study of the temperature dependence of tryptophan fluorescence lifetime in the range of –170°С to +20°С in various solvents. Biophysics, 66, 385 (2021). DOI: 10.1134/S0006350921030143
  13. 13. Han K. L. and Zhao G. J. Hydrogen bonding and transfer in the excited state (John Wiley&Sons Ltd., Chichester, UK, 2011). DOI: 10.1002/9780470669143
  14. 14. Gorokhov V. V., Korvatovsky B. N., Knox P. P., Grishanova N. P., Goryachev S. N., Pashchenko V. Z., and Rubin A. B. Temperature dependence of tryptophan fluorescence lifetime as an indicator of its microenvironment dynamics. Dokl. Biochem. Biophys. (Moscow), 498, 170 (2021). DOI: 10.1134/S1607672921030030
  15. 15. Gorokhov V. V., Knox P. P., Korvatovsky B. N., Goryachev S. N., Paschenko V. Z., and Rubin A. B. Influence of the microenvironment dynamics of tryptophan on its fluorescence parameters at different temperature. Biophysics, 68, 503 (2023). DOI: 10.1134/S0006350923040061
  16. 16. Knox P. P., Lukashev E. P., Gorokhov V. V., Seifullina N. Kh., and Paschenko V. Z. Relaxation processes accompanying electron stabilization in the quinone acceptor part of Rb. sphaeroides reaction centers. J. Photochem. Photobiol. B., 189, 145 (2018). DOI: 10.1016/j.jphotobiol.2018.10.005
  17. 17. Gorokhov V. V., Knox P. P., Korvatovsky B. N., Lukashev E. P., Goryachev S. N., Paschenko V. Z., and Rubin A. B. Comparison of spectral and temporal fluorescence parameters of aqueous tryptophan solutions frozen in the light and in the dark. Chem. Phys., 571, 111919 (2023). DOI: 10.1016/j.chemphys.2023.111919
  18. 18. Doster W. The dynamical transition of proteins, concepts and misconceptions. Eur. Biophys. J., 37, 591 (2008). DOI: 10.1007/s00249-008-0274-3
  19. 19. Liu H., Zhang H., and Jin B. Fluorescence of tryptophan in aqueous solution. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 106, 54 (2013). DOI: 10.1016/j.saa.2012.12.065
  20. 20. Blinc R. and Zeks B. Soft modes in ferroelectrics and antiferroelectrics (Am. Elsevier Publ. Comp. Inc, N.-Y., 1974). DOI: 10.1088/0031-9112/27/3/038
  21. 21. Finkelstein A. V. and Ptitsyn O. B. Protein physics: A course of lectures (Elsevier Sci., 2016). DOI: 10.13140/RG.2.1.1319.8320
  22. 22. Wang H., Lin S., Allen J. P., Williams J. A. C., Blankert S., Laser C., and Woodbury N. W. Protein dynamics control the kinetics of initial electron transfer in photosynthesis. Science, 316, 747 (2007). DOI: 10.1126/science.1140030
  23. 23. Wang H., Lin S., Katilius E., Laser C., Allen J. P., Williams J. A. C., and Woodbury N. W. Unusual temperature dependence of photosynthetic electron transfer due to protein dynamics. J. Phys. Chem. B, 113, 818 (2009). DOI: 10.1021/jp807468c
  24. 24. Nicholson J. P., Wolmarans M. R., and Park G. R. The role of albumin in critical illness. Brit. J. Anaestesia, 85, 599 (2000). DOI: 10.1093/bja/85.4.599
  25. 25. Togashi D. M., Ryder A. G., McMahon D., Dunne P., and McManus J. Fluorescence study of bovine serum albumin and Ti and Sn oxide nanoparticles interactions. In: Diagnostic Optical Spectroscopy in Biomedicine IV, Ed. By D. Schweitzer and M. Fitzmaurice (Proc. of SPIE-OSA Biomedical Optics, 2007), vol. 6628, paper 6628_61. DOI: 10.1364/ECBO.2007.6628_61
  26. 26. Carter D. C. and Ho J. X. Structure of serum albumin. In: Advances in Protein Chemistry, Ed. by C. B. Anfinsen, J. T. Edsall, F. M. Richards, and D. S. Eisenberg (Acad. Press, San Diego, 1994), vol. 45, pp. 153–203. DOI: 10.1016/S0065-3233(08)60640-3
  27. 27. Bell K. L. and Brenner H. C. Phosphorescence and optically detected magnetic resonance study of the tryptophan residue in human serum albumin. Biochemistry, 21, 799 (1982). DOI: 10.1021/bi00533a034
  28. 28. Peterman B. F. and Laidler K. J. Study of reactivity of tryptophan residues in serum albumins and lysozyme by N-bromosuccinamide fluorescence quenching. Arch. Biochem. Biophys., 199, 158 (1980). DOI: 10.1016/0003-9861(80)90268-4
  29. 29. Vandewal K. Interfacial charge transfer states in condensed phase systems. Annu. Rev. Phys. Chem., 67, 113 (2016). DOI: 10.1146/annurev-physchem-040215-112144
  30. 30. Marcus R. A. and Sutin N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta, 811, 265 (1985). DOI: 10.1016/0304-4173(85)90014-X
  31. 31. Punyiczki M. and Rosenberg A. The effect of viscosity on the accessibility of the single tryptophan in human serum albumin. Biophys. Chem., 42, 93 (1992). DOI: 10.1016/0301-4622(92)80011-s
  32. 32. Moriyama Y., Ohta D., Hachiya K., Mitsui Y., and Takeda K. Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: a comparative study of the two and one tryptophan(s) of bovine and human albumins. J. Prot. Chem., 15, 265 (1996). DOI: 10.1007/BF01887115
  33. 33. Jeremias H. F., Lousa D., Hollmann A., Coelho A. C., Baltazar C. S., Seixas J. D., Marques A. R., Santos N. C., Romao C. C., and Soares C. M. Study of the interactions of bovine serum albumin with a molybdenum(II) carbonyl complex by spectroscopic and molecular simulation methods. PLoS One, 13 (9), e0204624 (2018). DOI: 10.1371/journal.pone.0204624
  34. 34. Ghisaidoobe A. B. T., and Chung S. J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Forster resonance energy transfer techniques. Int. J. Mol. Sci., 15, 22518 (2014). DOI: 10.3390/ijms151222518
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library