- PII
- S0006302925020102-1
- DOI
- 10.31857/S0006302925020102
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 2
- Pages
- 314-327
- Abstract
- During artificial incubation of slices of the sensorimotor cortex of guinea pigs and the telencephalon of turtles, microionophoretic application of acetylcholine to neurons revealed a significantly lower frequency of spike responses in the nerve cells of turtles compared with guinea pig cells. This difference was attributed to the different rate of M-cholinergic response in the temperature ranges of 27–29°C and 34–36°C, as found previously in hypothermic experiments. Although experiments on guinea pig and turtle neurons were performed in the same temperature range (32–34°C), the genetically determined structure of neuronal membranes reflects the natural temperature dependence of both species: guinea pig membranes with a constant habitat temperature of 38°C have a higher density of К+ channels than turtles with a preferred temperature of 28–32°C. The difference in К+ channel representation was determined by a significantly longer activation aftereffect in turtle neurons in response to glutamate-induced spike activation. The low density of К+ channels on membranes and the low rate of the M-cholinergic response, which closes them at the onset of any adaptive act, prevent neurons from forming high-frequency and long-lasting impulse sequences to regulate behavior over a wide range in turtles with a preferred temperature of 28–32°C.
- Keywords
- черепахи морские свинки ацетилхолин глутамат импульсная активность нейронов температура скорость реакции
- Date of publication
- 24.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 18
References
- 1. Hasselmo M. E. Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav. Brain Res., 67 (1), 1–27 (1995). DOI: 10.1016/0166-4328(94)00113-t
- 2. Hodgkin A. L. and Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117 (4), 500–544 (1952). DOI: 10.1113/jphysiol.1952.sp004764
- 3. Krnjević K., Pumain R., and Renaud L. The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol., 215 (1), 247–268 (1971). DOI: 10.1113/jphysiol.1971.sp009467
- 4. Barkai E. and Hasselmo M. E. Modulation of the input/output function of rat piriform cortex pyramidal cells. J. Neurophysiol., 72 (2), 644–658 (1994). DOI: 10.1152/jn.1994.72.2.644
- 5. Weight F. F., Schulman J. A., Smith P. A., and Busis N. A. Long-lasting synaptic potentials and the modulation of synaptic transmission. Federation Proceedings, 38 (7), 2084–2094 (1979). PMID: 221268
- 6. Suzuki M. and Larkum M. E. General anesthesia decouples cortical pyramidal neurons. Cell, 180, 666–676 (2020). DOI: 10.1016/j.cell.2020.01.024
- 7. Krnjević K. and Phillis J. W. Acetylcholine-sensitive sells in the cerebral cortex. J. Physiol., 166 (2), 296–327 (1963). DOI: 10.1113/jphysiol.1963.sp007106
- 8. Godfraind J. M., Kawamura H., Krnjević K., and Pumain R. Actions of dinitrophenol and some other metabolic inhibitors on cortical neurons. J. Physiol., 215 (1), 199–222 (1971). DOI: 10.1113/jphysiol.1971.sp009465
- 9. Медникова Ю. С., Пасикова Н. В. и Копытова Ф. В. Влияние температуры на импульсную активность корковых нейронов у морских свинок. Рос. физиол. журн. им. И.М. Сеченова, 88 (11), 1492–1500 (2002).
- 10. Adams P. R., Brown D. A., and Constanti A. Pharmacological inhibition of the M-current. J. Physiol., 332, 223–262 (1982). DOI: 10.1113/jphysiol.1982.sp014357
- 11. McCormick D. A. and Prince D. A. Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. J. Physiol., 375, 169–194 (1986). DOI: 10.1113/jphysiol.1986.sp016112
- 12. Krnjević K. Chemical nature of synaptic transmission in vertebrates. Physiol. Rev., 54, 418–540 (1974). DOI: 10.1152/physrev.1974.54.2.418
- 13. Медникова Ю. С., Карнуп С. В. и Жадин М. Н. Холинергическая модуляция импульсных реакций нейронов на дендритное и соматическое подведение возбуждающих аминокислот. Журн. высш. нерв. деятельности им. И.П. Павлова, 52 (4), 479–488 (2002).
- 14. Медникова Ю. С., Воронков Д. Н., Худоерков Р. М., Пасикова Н. В. и Захарова Н. М. Активная и пассивная составляющие нейронального возбуждения и его глиальное сопровождение. Биофизика, 66 (4), 756–773 (2021).
- 15. Зеймаль Э. В. и Шелковников С. А. Мускариновые холинорецепторы (Наука, Л., 1989).
- 16. Brown D. A., Abogadie F. C., Allen T. G. J., Buckley N. J., Caulfield M. P., Delmas P., Haley J. E., Lamas J. A., and Selyanko A. A. Muscarinic mechanisms in nerve cells. Life Sci., 60 (13/14), 1137–1144 (1997). DOI: 10.1016/S0024-3205(97)00058-1
- 17. Медникова Ю. С. и Пасикова Н. В. Температурная чувствительность холинергической реакции нейронов коры мозга морских свинок. Рос. физиол. журн. им. И.М. Сеченова, 90 (2), 193–201 (2004).
- 18. Mednikova Y. S., Kozlov M. K., and Makarenko A. N. Energy aspects of sodium thiopental action on nervous activity. J. Behav. Brain Sci., 9, 33–53 (2019). DOI: 10.4236/jbbs.2019.92004
- 19. Bentley P., Driver J., and Dolan R. Cholinergic modulation of cognition: insights from human pharmacological functional neuroimaging. Progr. Neurobiol., 94, 360–388 (2011). DOI: 10.1016/j.pneurobio.2011.06.002
- 20. Inglis F. M. and Figiber H. C. Increases in hippocampal and frontal cortical acetylcholine release associated with presentation of sensory stimuli. Neuroscience, 66 (1), 81–86 (1995).
- 21. Evarts E. V. Pyramidal tract activity associated with a conditioned hand movement in the monkey. J. Neurophysiol., 29, 1011–1027 (1966). DOI: 10.1152/jn.1966.29.6.1011
- 22. Чернышев Б. В., Панасюк Я. А., Семикопная И. И. и Тимофеева Н. О. Активность нейронов базального крупноклеточного ядра при реализации инструментального условного рефлекса. Журн. высш. нерв. деятельности им. И.П. Павлова, 53 (5), 633–645 (2003).
- 23. Wyler A. R., Burchiel K. J., and Robbins C. A. Operant control of precentral neurons: comparison of fast and slow pyramidal tract neurons. Exp. Neurol., 69 (2), 430–433 (1980). DOI: 10.1016/0014-4886(80)90019-9
- 24. Szerb J. C. Cortical acetylcholine release and electroencephalographic arousal. J. Physiol., 192 (2), 329–343 (1967). DOI: 10.1113/jphysiol.1967.sp008303
- 25. Sarter M. and Bruno J. P. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience, 95 (4), 933–952 (2000). DOI: 10.1016/s0306-4522(99)00487-x
- 26. Пасикова Н. В., Медникова Ю. С. и Аверина И. В. Температурное регулирование частоты спонтанной активности и сопутствующее изменение амплитуды спайков корковых нейронов. Рос. физиол. журн. им. И.М. Сеченова, 96 (3), 315–324 (2010).
- 27. Чумаков Н. М. и Жарков М. А. Климат во время пермо-триасовых биосферных перестроек. 1. Климат ранней перми. Стратиграфия. Геологическая корреляция, 10 (6), 62–81 (2002).
- 28. Sellwood B. W. and Valdes P. J. Mesozoic climates: General circulation models and the rock record. Sediment. Geol., 190, 269–287 (2006). DOI: 10.1016/j.sedgeo.2006.05.013
- 29. Аверьянов А. О. и Лопатин А. В. Динозавры России: завроподы (Sauropodomorpha). Вестн. РАН, 93 (5), 439–444 (2023). DOI: 10.31857/S0869587323040023
- 30. Исабекова С. Б. Термобиология рептилий (Гылым, Алма-Ата, 1990).
- 31. Курепина М. М. Мозг животных (Наука, М., 1981).
- 32. Филимонов И. Н. Сравнительная анатомия большого мозга рептилий (Изд-во АН СССР, М., 1963).
- 33. Doll Сh. J., Hochachka P. W., and Reiner P. B. Channel arrest: implications from membrane resistance in turtle neurons. Am. J. Physiol., 261 (5, Pt2), R1321–R1324 (1991). DOI: 10.1152/ajpregu.1991.260.4.R747
- 34. Закс Л. Статистическое оценивание (Статистика, М., 1976).
- 35. Крамер Г. Математические методы статистики (Мир, М., 1975).
- 36. Обручева О. П. Палеонтология позвоночных (Изд-во МГУ, М., 1987).
- 37. Reisz R. R. and Head J. J. Palaeontology: turtler origins out to sea. Nature, 456, 450–451 (2008). DOI: 10.1038/456450a
- 38. Ершов Э. Д. Общая геокриология (Из-во МГУ, М., 2002).
- 39. Галимов Э. М. Оледенения в истории Земли, биосфера и низкая светимость Солнца. Природа, № 6, 44–52 (2019).
- 40. Mednikova Y. S. and Kalabushev S. N. Thermally dependent behaviour of cold-blooded animals: overcoming two temperature barriers on the way to warm-blooded. J. Behav. Brain Sci., 13, 95–112 (2023). DOI: 10.4236/jbbs.2023.135007
- 41. Araujo R., David R., Benoit J., Lungmus J. K., Stoessel A., Barrett P. M., Maisano J. A., Ekdale E., Orliac M., Luo Z.-Xi., Martinelli A. G., Hoffman E. A., Sidor C. A., Martins R. M. S., Spoor F., and Angielczyk K. D. Inner ear biomechanic reveals the Late Triassic origin of mammalian endothermy. Nature, 607, 726–731 (2022). DOI: 10.1038/s41586-022-04963-z
- 42. Мэгун Г. Бодрствующий мозг (Изд-во ИЛ, М., 1961).
- 43. Ma Sh., Hangya B., Leonard Ch. S., Wisden W., and Gundlach A. L. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci. Biobeh. Rev., 85, 21–33 (2018). DOI: 10.1016/j.neubiorev.2017.07.009
- 44. Mesulam M.-M., Mufson E. J., Wainer B. H., and Levey A. I. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience, 10 (4), 1185–1201 (1983). DOI: 10.1016/0306-4522(83)90108-2
- 45. Fibiger H. C. Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence. Trends Neurosci., 14 (6), 220–223 (1991). DOI: 10.1016/0166-2236(91)90117-D
- 46. Villano I., Messina A, Valenzano A., Moscatelli F., Esposito T., Monda V., Esposito M., Precenzano F., Carotenuto M., Viggiano A., Chieffi S., Cibelli G., Monda M., and Messina G. Basal forebrain cholinergic system and orexin neurons: effects on attention. Front. Behav. Neurosci., 11, Art. 10 (2017). DOI: 10.3389/fnben.217.00010
- 47. Houser C. R., Crawford G. D., Salvaterra P. M., and Vaughn J. E. Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses. J. Comp. Neurol., 234 (1), 17–34 (1985). DOI: 10.1002/cne.902340103
- 48. Arakawa I., Muramatsu I., Uwada J., Sada K., Matsukawa N., and Masuoka T. Acetylcholine release from striatal cholinergic interneurons is controlled differently depending on the firing pattern. J. Neurochem., 167, 38–51 (2023). DOI: 10.1111/jnc.15950
- 49. Mineur Y. S. and Picciotto M. R. How can I measure brain acetylcholine levels in vivo? Advantages and caveats of commonly used approaches. J. Neurochem., 167, 3–15 (2023). DOI: 10.1111/jnc.15943
- 50. Decker A. L. and Duncan K. Acetylcholine and the complex interdependence of memory and attention. Curr. Opin. Behav. Sci., 32, 1–8 (2020). DOI: 10.1016/j.cobeha.2020.01.013
- 51. Wang Y. P., Kawai Y., and Nakashima K. Rabbit P300like potential depends on cortical muscarinic receptor activation. Neuroscience, 89 (2), 423–427 (1999). DOI: 10.1016/S0306-4522(98)00299-1
- 52. Perry E., Walker M., Grace J., and Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci., 22 (6), 273–280 (1999). DOI: 10.1016/s0166-2236(98)01361-7
- 53. Воронин Л. Г. Эволюция высшей нервной деятельности (очерки) (Наука, М., 1977).
- 54. Butt A. E., Testylier G., and Dykes R. W. Acetylcholine release in rat frontal and somatosensory cortex is enhanced during tactile discrimination learning. Psychobiology, 25 (1), 18 (1997). DOI: 10.3758/BF03327024
- 55. Иванов К. П. Изменения физиологических функций, механизмы их восстановления и температурные границы жизни при гипотермии. Успехи физиол. наук, 27 (3), 84–105 (1996).
- 56. Haj-Dahmane S. and Andrade R. Ionic mechanism of the slow afterdepolarization induced by muscarinic receptor activation in rat prefrontal cortex. J. Neurophysiol., 80 (3), 1197–1210 (1998). DOI: 10.1152/jn.1998.80.3.1197
- 57. Schwindt P. C., Spain W. J., Foehring R. C., Stafstrom C. E., Chubb M. C., and Crill W. E. Multiple potassium conductances and their function in neurons from cat sensorimotor cortex in vitro. J. Neurophysiol., 59 (2), 424–449 (1988). DOI: 10.1152/jn.1988.59.2.424
- 58. Kang J., Huguenard J. R., and Prince D. A. Development of BK channels in neocortical pyramidal neurons. J. Neurophysiol., 76, 188–198 (1996). DOI: 10.1152/jn.1996.76.6.4194
- 59. Franceschetti S., Sancini G., Panzica F., Radici C., and Avanzini G. Postnatal differentiation of firing properties and morphological characteristics in layer V pyramidal neurons of the sensorimotor cortex. Neuroscience, 83 (4), 1013–1024 (1998). DOI: 10.1016/s0306-4522(97)00463-6
- 60. Pamenter M. E. and Buck L. T. Neuronal membrane potential is mildly depolarized in the anoxic turtle cortex. Comp. Biochem. Physiol., Part A, 150, 410–414 (2008). DOI: 10.1016/j.cbpa.2008.04.605
- 61. Rodgers-Garlick C. I., Hogg D. W., and Buck L. T. Oxygensensitive reduction in Ca++-activated K+ channel open probability in turtle cerebrocortex. Neuroscience, 237, 243–254 (2013). DOI: 10.1016/j.neuroscience.2013.01.046
- 62. Hochachka P. W. Defense strategies against hypoxia and hypothermia. Science, 231, 234–241 (1986). DOI : 10.1126/science.2417316
- 63. Hussan M. T., Sakai A., and Matsui H. Glutamatergic pathways in the brain of turtles: a comparative perspective among reptiles, birds and mammals. Front. Neuroanatomy, 16, Art. 937504 (2022). DOI: 10.3389/fnana.2022.937504
- 64. Реутов B. П., Пасикова Н. В. и Сорокина Е. Г. Типовой патологический процесс при глутаматной нейротоксичности: роль активных форм азота и кислорода. Биофизика, 69 (5), 1044–1077 (2024).
- 65. Suarez R. K., Doll C. J., Buie A. E., West T. G., Funk G. D., and Hochachka P. W. Turtles and rat: a biochemical comparison of anoxia-tolerant and anoxia-sensitive brains. Regulatory, Integrative and Comparative Physiology, 257 (5), R1083–R1088 (1989). DOI: 10.1152/ajpregu.1989.257.5.R1083
- 66. Lipton P. Ischemic cell death in brain neurons. Physiol. Rev., 79 (4), 1431–1568 (1999). DOI: 10.1152/physrev.1999.79.4.1431
- 67. Медникова Ю. С., Копытова Ф. В. и Жадин М. Н. Спонтанная активность корковых нейронов in vitro и ее регулирование под воздействием ацетилхолина. Рос. физиол. журн. им. И.М. Сеченова, 95 (8), 820–829 (2009).
- 68. Rall W., Burke R. E., Holmes W. R., Jack J. J. B., Redman S. J., and Segev I. Matching dendritic neuron models to experimental data. Physiol. Rev., 72 (Suppl.), S159–S186 (1992). DOI: 10.1152/physrev.1992.72.suppl_4.S159
- 69. Mednikova Y. S. and Rogal A. V. Heterogeneity of the neural composition of cortical regions as a condition for a wide range regulating spontaneous activity. J. Behav. Brain Sci., 10, 220–236 (2020). DOI: 10.4236/jbbs.2020.105014
- 70. Leao R. M., Li Sh., Doiron B., and Tzounopoulos T. Diverse levels of an inwardly rectifying potassium conductance generate heterogeneous neuronal behavior in a population of dorsal cochlear nucleus pyramidal neurons. J. Neurophysiol., 107, 3008–3019 (2012). DOI: 10.1152/jn.00660.2011
- 71. Kim K.-R., Lee S. Y., Yoon S. H., Kim Y., Jeong H.-Yu, Lee S., Suh Y. H., Kang J.-S. Cho H., Lee S.-H., Kim M.-H., and Ho W.-K. Kv 4.1, a key ion channel for low frequency firing of dentate granule cells, is crucial for pattern separation. J. Neurosci., 40 (11), 2200–2214 (2020).