- PII
- S0006302925020116-1
- DOI
- 10.31857/S0006302925020116
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 2
- Pages
- 328-332
- Abstract
- DNA demethylation makes closed regions of the genome available for transcription and thus causes increased activity of mobile genetic elements (transposons) in the genome. The study of the influence of abnormal activity of transposons on cell energy attracts attention due to the potential possibility of using this effect to create an energy deficit with subsequent launch of cell death programs, which may be relevant for the development of anti-cancer strategies. The paper presents the results of experimental measurements of the ATP amount in HEK-293 cells obtained from human embryonic kidneys and the MCF-7 breast cancer cell line under normal and demethylation conditions. The HEK-293 line was transfected with a plasmid containing the LINE-1-EGFP genetic construct, and active insertion of the LINE-1 transposon in the transfected cells was shown. Transposon expression in demethylated MCF-7 cells was shown using real-time PCR. The results of ATP measurements demonstrate an increase in energy stores in cells upon both demethylation and transfection with LINE-1-EGFP. The observed effect suggests that the energy load expected from transposon activation is overwhelmed by the energy release from other cellular processes that occur during demethylation and transfection.
- Keywords
- мобильные элементы транспозоны АТФ
- Date of publication
- 24.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 18
References
- 1. Cordaux R. and Batzer M. A. The impact of retrotransposons on human genome evolution. Nature Rev. Genet., 10, 691–703 (2009). DOI: 10.1038/nrg2640
- 2. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W., et al. Initial sequencing and analysis of the human genome. Nature, 409, 860–921 (2001). DOI: 10.1038/35057062
- 3. Schrader L. and Schmitz J. The impact of transposable elements in adaptive evolution. Mol. Ecol., 28, 1537–1549 (2019). DOI: 10.1111/mec.14794
- 4. Yu C.-W., Tai R., Wang S.-C., Yang P., Luo M., Yang S., Cheng K., Wang W.-C., Cheng Y.-S., and Wu K. HISTONE DEACETYLASE6 acts in concert with histone methyltransferases SUVH4, SUVH5, and SUVH6 to regulate transposon silencing. Plant Cell, 29, 1970–1983 (2017). DOI: 10.1105/tpc.16.00570
- 5. Pradhan R. K. and Ramakrishna W. Transposons: unexpected players in cancer. Gene, 808, 145975 (2022). DOI: 10.1016/j.gene.2021.145975
- 6. Павлов С. Р., Гурский В. В., Самсонова М. Г., Канапин А. А. и Самсонова А. А. Управление активностью мобильных элементов в раковых клетках как стратегия для противораковой терапии. Биофизика, 69 (6), 1231–1234 (2025). DOI: 10.31857/S0006302924050102.
- 7. Eguchi Y., Shimizu S., and Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res., 57, 1835–1840 (1997).
- 8. Lieberthal W., Menza S. A., and Levine J. S. Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am. J. Physiol. −Renal Physiol., 274, F315–F327 (1998). DOI: 10.1152/ajprenal.1998.274.2.f315
- 9. Skulachev V. P. Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis, 11, 473–485 (2006). DOI: 10.1007/s10495-006-5881-9
- 10. Wigner P., Zielinski K., Labieniec-Watala M., Marczak A., and Szwed M. Doxorubicin–transferrin conjugate alters mitochondrial homeostasis and energy metabolism in human breast cancer cells. Sci. Reports, 11, 4544 (2021). DOI: 10.1038/s41598-021-84146-4
- 11. Livak K. J. and Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25 (4), 402–408 (2001). DOI: 10.1006/meth.2001.1262