- PII
- S0006302925020139-1
- DOI
- 10.31857/S0006302925020139
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 2
- Pages
- 347-353
- Abstract
- Vernalization, or prolonged exposure to cold, significantly accelerates flowering and increases yields in many crops. The mechanisms of the effect of vernalization on the transition to flowering are well studied in the model organism Arabidopsis thaliana, but have not yet been uncovered in legumes. We examined the effect of vernalization on flowering gene expression in one of the most important legumes, chickpea. The response to vernalization is characteristic of wild chickpea species, while this property is largely lost in the cultivated varieties. We compared expression of orthologs of the main Arabidopsis flowering regulators in wild and cultivated chickpea with and without vernalization. The expression levels of FTa1 and FTa3 gene products increased significantly after vernalization, regardless of species. At the same time, the response to vernalization of FT-activated genes differed between cultivated and wild chickpea, suggesting different regulatory mechanisms in the gene network.
- Keywords
- нут цветение яровизация экспрессия генов
- Date of publication
- 24.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 19
References
- 1. Sharma S. and Upadhyaya H. D. Vernalization and photoperiod response in annual wild cicer species and cultivated chickpea. Crop Sci., 55 (5), 2393–2400 (2015). DOI: 10.2135/cropsci2014.09.0598
- 2. Pinhasi van-Oss R., Sherman A., Zhang H. B., Vandemark G., Coyne C., and Abbo S. Vernalization response of domesticated × wild chickpea progeny is subject to strong genotype by environment interaction. Plant Breed., 135 (1), 102–110 (2016). DOI: 10.1111/pbr.12325
- 3. Gaur P. M., Jukanti A. K., and Varshney R. K. Impact of genomic technologies on chickpea breeding strategies. Agronomy, 2 (3),199–221 (2012).
- 4. von Wettberg E., Chang P. L., Başdemir F., Carrasquila-Garcia N., Korbu L. B., Moenga S. M., Bedada G., Greenlon A., Moriuchi K. S., Singh V., Cordeiro M. A., Noujdina N. V., Dinegde K. N., Shah Sani S., Getahun T., Vance L., Bergmann E., Lindsay D., Mamo B. E., Warschefsky E. J., Dacosta-Calheiros E., Marques E., Yilmaz M. A., Cakmak A., Rose J., Migneault A., Krieg Ch. P., Saylak S., Temel H., Friesen M. L., Siler E., Akhmetov Zh., Ozcelik H., Kholova J., Can C., Gaur P., Yildirim M., Sharma H., Vadez V., Tesfaye K., Woldemedhin A. F., Tar’an B., Aydogan A., Bukun B., Penmetsa R. V., Berger J., Kahraman A., Nuzhdin S. V., and Cook D. R. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nature Commun., 9 (1), 649 (2018). DOI: 10.1038/s41467-018-02867-z
- 5. Wigge P. A., Kim M. C., Jaeger K. E., Busch W., Schmid M., Lohmann J. U., and Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 309 (5737), 1056–1059 (2005). DOI: 10.1126/science.1114358
- 6. Zeevaart J. A. Leaf-produced floral signals. Curr. Opin. Plant Biol., 11, 541–547 (2008).
- 7. Lee J. H., Hong S. M., Yoo S. J., Park O. K., Lee J. S., and Ahn J. H. Integration of floral inductive signals by flowering locus T and suppressor of overexpression of Constans 1. Physiol. Plantarum, 126 (4), 475–483 (2006). DOI :10.1111/j.1399-3054.2006.00619.x
- 8. Searle I., He Y., Turck F., Vincent C., Fornara F., Krober S., Amasino R. A., and Coupland G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Devel., 20 (7), 898–912 (2006). DOI: 10.1101/gad.373506
- 9. Mateos J. L., Madrigal P., Tsuda K., Rawat V., Richter R., Romera-Branchat M., Fornara F., Schneeberger K., Krajewski P., and Coupland G. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biol., 16 (1), 31 (2015). DOI: 10.1186/s13059-015-0597-1
- 10. Weller J. L. and Ortega R. Genetic control of flowering time in legumes. Front. Plant Sci., 6, 207 (2015). DOI: 10.3389/fpls.2015.00207
- 11. Hecht V., Foucher F., Ferrandiz C., Macknight R., Navarro C., Morin J., Vardy M.E., Ellis N., Beltran J.P., Rameau C., and Weller J.L. Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol., 137 (4), 1420–1434 (2005). DOI: 10.1104/pp.104.057018
- 12. Laurie R. E., Diwadkar P., Jaudal M., Zhang L., Hecht V., Wen J., Tadege M., Mysore K. S., Putterill J., Weller J. L., and Macknight R. C. The Medicago FLOWERING LOCUS T homolog, MtFTa1, is a key regulator of flowering time. Plant physiology, 156 (4), 2207–2224 (2011). DOI: 10.1104/pp.111.180182
- 13. Nelson M. N., Książkiewicz M., Rychel S., Besharat N., Taylor C. M., Wyrwa K., Jost R., Erskine W., Cowling W. A., Berger J. D., Batley J., Weller J. L., Naganowska B., and Wolko B. The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T (FT) homologue. New Phytol., 213 (1), 220–232 (2017). DOI: 10.1111/nph.14094
- 14. Fudge J. B., Lee R. H., Laurie R. E., Mysore K. S., Wen J., Weller J. L., and Macknight R. C. Medicago truncatula SOC1 Genes Are Up-regulated by Environmental Cues That Promote Flowering. Front. Plant Sci., 9, 496 (2018). DOI: 10.3389/fpls.2018.00496
- 15. Taylor C. M., Kamphuis L. G., Zhang W., Garg G., Berger J. D., Mousavi-Derazmahalleh M., Bayer P. E., Edwards D., Singh K. B., Cowling W. A., and Nelson M. N. INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ., 42 (1), 174–187 (2019). DOI: 10.1111/pce.13320
- 16. Rychel-Bielska S., Plewiński P., Kozak B., Galek R., and KsiaŻkiewicz M. Photoperiod and Vernalization Control of Flowering-Related Genes: A Case Study of the NarrowLeafed Lupin (Lupinus angustifolius L.). Front. Plant Sci., 11, 572135 (2020) DOI: 10.3389/fpls.2020.572135
- 17. Surkova S. Y. and Samsonova M. G. Mechanisms of vernalizationinduced flowering in legumes. Int. J. Mol. Sci., 23 (17), 9889 (2022). DOI: 10.3390/ijms23179889
- 18. Ridge S., Deokar A., Lee R., Daba K., Macknight R. C., Weller J. L., and Tar'an B. The chickpea early flowering 1 (Efl1) locus is an ortholog of Arabidopsis ELF3. Plant Physiol., 175, 802–815 (2017). DOI: 10.1104/pp.17.00082
- 19. Gretsova M., Surkova S., Kanapin A., Samsonova A., Logacheva M., Shcherbakov A., Logachev A., Bankin M., Nuzhdin S., and Samsonova M. Transcriptomic Analysis of Flowering Time Genes in Cultivated Chickpea and Wild Cicer. Int. J. Mol. Sci., 24 (3), 2692. DOI: 10.3390/ijms24032692
- 20. Ortega R., Hecht V. F. G., Freeman J. S., Rubio J., Carrasquilla-Garcia N., Mir R. R., Penmetsa R. V., Cook D. R., Millan T., and Weller J. L. Altered expression of an FT cluster underlies a major locus controlling domesticationrelated changes to chickpea phenology and growth habit. Front. Plant Sci., 10, 824 (2019). DOI: 10.3389/fpls.2019.00824.
- 21. Rao X., Huang X., Zhou Z., and Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative realtime polymerase chain reaction data analysis. Biostatistics, Bioinformatics and Biomathematics, 3 (3), 71–85 (2013).
- 22. Hecht V., Laurie R. E., Vander Schoor J. K., Ridge S., Knowles C. L., Liew L. C., Sussmilch F. C., Murfet I. C., Macknight R. C., and Weller J. L. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for grafttransmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell, 23 (1), 147–161 (2011). DOI: 10.1105/tpc.110.081042
- 23. Sussmilch F. C., Berbel A., Hecht V., Vander Schoor J. K., Ferrandiz C., Madueno F., and Weller J. L. Pea VEGETATIVE2 is an FD homolog that is essential for flowering and compound inflorescence development. Plant Cell, 27 (4), 1046–1060 (2015). DOI: 10.1105/tpc. 115.136150