- PII
- S0006302925020155-1
- DOI
- 10.31857/S0006302925020155
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 2
- Pages
- 359-373
- Abstract
- The skeletal muscle contraction model as a complex of active motor units (sarcomeres) is discussed. The sarcomere model takes into account that forces are generated by myosin bridges interacting with actin filaments in muscle myofibrils. The input of the model is the rate of calcium ion influx into muscle cells, which is assumed to be proportional to the motor neurons potential. The description of the muscle force as a whole uses averaging over an ensemble of motor units. The parameters of the model are adapted to describe contraction of a skeletal muscle sarcomere. The transition from contraction of a single sarcomere to slow contraction of the whole muscle is constructed using motion separation methods. The model of “slow” contraction of a single muscle fiber excited by a single nerve impulse has no independent value because the characteristic time of change of the impulse potential is short. Nevertheless, for description of tetanic muscle contraction, when the change in the total action on the muscle is smooth enough, it seems acceptable to use such an approximate model. Approximate numerical estimates of the error of the constructed model for a simplified example are given.
- Keywords
- скелетная мышцы мышечное сокращение модель мышцы
- Date of publication
- 24.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 20
References
- 1. Hill A. V. The heat of shortening and dynamics constants of muscles. Proc. Roy. Soc. Lond., 126 (843), 136–195, 1938.
- 2. Huxley A. Muscle structure and theories of contraction. Progr. Biophys. Biophys. Chem., 7, 255–318, 1957.
- 3. Дещеревский В. И. Математические модели мышечного сокращения (Наука, М., 1977).
- 4. Черноус Д. А. и Шилько С. В. Актуаторная функция мышцы: модель генерации силы при изометрическом возбуждении. Рос. журн. биомеханики, 12 (1), 13–21, 2008.
- 5. Фельдман А. Центральные и рефлекторные механизмы управления движениями (Наука, М., 1979).
- 6. Latash M. and Zatsiorsky V. Biomechanics and motor control: defining central concepts (Acad. Press, San Diego, 2015). DOI: 10.1016/C2013-0- 18342-0
- 7. Зациорский В. и Прилуцкий Б. Нахождение усилий мышц человека по заданному движению. Совр. проблемы биомеханики, № 7, 81–123 (1993).
- 8. Peshin S., Karakulova J., and Kuchumov A. A coupled electro-mechanical approach for early diagnostic of carpal tunnel syndrome. MedRxiv (2023), DOI: 10.1101/2023.06.16.23291511
- 9. Кубасова Н. А. и Цатурян А. К. Молекулярный механизм работы актин-миозинового мотора в мышце. Успехи биол. химии, 51, 233–282 (2011).
- 10. Syomin F. A. and Tsaturyan A. K. A simple model of cardiac muscle for multiscale simulation: Passive mechanics, crossbridge kinetics and calcium regulation. J. Theor. Biol., 420, 105–116 (2017).
- 11. Syomin F. A., Zberia M. V., and Tsaturyan A. K. Multiscale simulation of the effects of atrioventricular block and valve diseases on heart performance. Int. J. Numer. Methods Biomed. Engineer., 35 (7), e3216 (2019). DOI: 10.1002/cnm.3216
- 12. Konhilas J., Irving T., and de Tombe P. Length-dependent activation in three striated muscle types of the rat. J. Physiol., 544, 225–236 (2002).
- 13. Fryer M. and Neering I. Actions of caffeine on fast- and slow-twitch muscles of the rat. J. Physiol., 416 (1), 435–454 (1989).
- 14. Новожилов И. Фракционный анализ (МГУ, М., 1995).
- 15. Влахова А. Математические модели движения колесных аппаратов (АНО ≪Ижевский институт компьютерных исследований≫, Ижевск, 2014).