RAS BiologyБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

Heterogenous Properties of Potassium Glutamate Neurones in the Ventral and Dorsal Zones of the CA1 Hippocampus

PII
S30345278S0006302925040064-1
DOI
10.7868/S3034527825040064
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
677-689
Abstract
A comparative study of the electrophysiological characteristics of pyramidal (PC) neurons of the dorsal and ventral parts of the CA1 zone of the hippocampus of mice was conducted using the patch-clamp method in the “whole cell” configuration. The potassium load was used as a parameter for cell type discrimination (an increase in [K+]o from 3.0 to 8.5 mM in the medium). It has been established that two types of cells with different sensitivity to potassium are registered in both parts of the CA1 zone. In PC-A type cells, the burst activity caused by a step of current I (from 10 to 200 pA) is potentiated by potassium with an increase in [K+]o to 8.5 mM, whereas in PC-I type cells at currents I < 100 pA there is no effect of potassium loading, and at currents ≥ 125 pA, suppression of burst activity is observed. The ratio of the number of PC-A/PC-I cells in the ventral and dorsal parts is 16 : 5 and 8 : 8, respectively. Potassium potentiation of burst activity is higher in ventral PC-A cells than in dorsal cells. Only in PC-A cells with potassium loading, the threshold current (Ith) decreases by 2.5 times and a spontaneous burst (pacemaker) activity is manifested. The Sag potential and the adaptation index of induced impulse activity are higher in the ventral PC-A cells than in the dorsal ones. The potassium load reduces the Sag potential. An analysis of the voltage characteristics shows that incoming and outgoing (predominantly) slow potassium currents are activated under potassium load. The currents in the ventral neurons of both types are 1.5–2.0 times lower than in the dorsal ones (at –100 mV and +20 mV). Taken together, these data suggest that K+ o-sensitive ventral PC-A cells can play an important role in hyper-excitation of neural networks and induction of epileptogenesis.
Keywords
пэтч-кламп пирамидальные нейроны поле СА1 гиппокампа калиевая нагрузка пейсмейкерные клетки гетерогенность электрофизиологических свойств
Date of publication
13.12.2025
Year of publication
2025
Number of purchasers
0
Views
34

References

  1. 1. Fanselow M. S. and Dong H. W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65, 7–19 (2010). DOI: 10.1016/j.neuron.2009.11.03
  2. 2. Bragdon A. C., Taylor D. M., and Wilson W. A. Potassium-induced epileptiform activity in area CA3 varies markedly along the septotemporal axis of the rat hippocampus. Brain Res., 378, 169–173 (1986).
  3. 3. Dougherty K. A., Islam T., and Johnston D. Intrinsic excitability of CA1 pyramidal neurones from the rat dorsal and ventral hippocampus. J. Physiol., 590, 5707–5722 (2012). DOI: 10.1113/jphysiol.2012.242693
  4. 4. Malik R., Dougherty K. A., Parikh K., Byrne C., and Johnston D. Mapping the electrophysiological and morphological properties of CA1 pyramidal neurons along the longitudinal hippocampal axis. Hippocampus, 26 (3), 341–361 (2016). DOI: 10.1002/hipo.22526
  5. 5. Arnold E. C., McMurray C., Gray R., and Johnston D. Epilepsy-induced reduction in HCN channel expression contributes to an increased excitability in dorsal, but not ventral, hippocampal CA1 neurons. eNeuro, 6 (2), ENEURO.0036-19.2019 (2019).DOI: 10.1523/ENEURO.0036-19.2019
  6. 6. Floriou-Servou A., von Ziegler L., Stalder L., Sturman O., Privitera M., Rassi A., Cremonesi A., Thöny B., and Bohacek J. Distinct proteomic, transcriptomic, and epigenetic stress responses in dorsal and ventral hippocampus. Biol. Psychiatry, 84 (7), 531–541(2018).DOI: 10.1016/j.biopsych.2018.02.003
  7. 7. Milior C., Di Castro M. A., Sciarria L. P., Garofalo S., Branchi I., Ragozzino D., Limatola C., and Maggi L. Electrophysiological properties of CA1 pyramidal neurons along the longitudinal axis of the mouse hippocampus. Sci. Rep., 6, 38242 (2016). DOI: 10.1038/srep38242
  8. 8. Racine R. J., Rose P. A., and Burnham W. M. Afterdischarge thresholdsand kindling rates in dorsal and ventral hippocampus and dentate gyrus. Can. J. Neurol. Sci., 4, 273–278 (1977). DOI: 10.1017/s0317167100025117
  9. 9. Galashin A. S., Konakov M. V., and Dynnik V. V. Comparison of spontaneous and evoked activity of CA1 pyramidal cells and dentate gyrus granule cells of the hippocampus at an increased extracellular potassium concentration. Biochemistry (Moscow), Suppl. Ser. A: Membrane and Cell Biology, 18 (4), 339–347 (2024).DOI: 10.1134/S1990747824700338
  10. 10. Nenov M. N., Tempia F., Denner L., Dineley K. T., and Laezza F. Impaired firing properties of dentate granule neurons in an Alzheimer's disease animal model are rescued by PPARγ agonism. J. Neurophysiol., 113 (6), 1712– 26 (2015). DOI: 10.1152/jn.00419.2014
  11. 11. Harden S. W. pyABF: a pure-Python ABF file reader. URL: https://pypi.org/project/pyabf/ (дата обращения: 05.05.2024).
  12. 12. Mishra P. and Narayanan R. The enigmatic HCN channels: A cellular neurophysiology perspective. Proteins, 93 (1), 72–92 (2025). DOI: 10.1002/prot.26643
  13. 13. Ha G. E. and Cheong E. Spike frequency adaptation in neurons of the central nervous system. Exp. Neurobiol., 26 (4), 179–185 (2017). DOI: 10.5607/en.2017.26.4.179
  14. 14. Yamashita T., Horio Y., Yamada M., Takahashi N., Kondo C., and Kurachi Y. Competition between Mg2+ and spermine for a cloned IRK2 channel expressed in a human cell line. J. Physiol., 493 (Pt 1), 143–156 (1996).DOI: 10.1113/jphysiol.1996.sp021370
  15. 15. Ishihara K. and Ehara T. A repolarization-induced transient increase in the outward current of the inward rectifier K+ channel in guinea-pig cardiac myocytes. J. Physiol., 510 (Pt 3), 755–771 (1998).DOI: 10.1111/j.1469-7793.1998.755bj.x
  16. 16. Dhamoon A. S., Pandit S. V., Sarmast F., Parisian K. R., Guha P., Li Y., Bagwe S., Taffet S. M., and Anumonwo J. M. B. Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current. Circ. Res., 94, 1332–1339 (2004).DOI: 10.1161/01.RES.0000128408.66946.67
  17. 17. McCormick D. A. and Pape H. C. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J. Physiol., 431, 291–318 (1990). DOI: 10.1113/jphysiol.1990.sp018331
  18. 18. Azene E. M., Xue T., and Li R. A. Molecular basis of the effect of potassium on heterologously expressed pacemaker (HCN) channels. J. Physiol., 547, 349–356 (2003). DOI: 10.1113/jphysiol.2003.039768
  19. 19. Nuss H. B., Marbán E., and Johns D. C. Overexpression of a human potassium channel suppresses cardiac hyperexcitability in rabbit ventricular myocytes. J. Clin. Invest., 103, 889–896 (1999). DOI: 10.1172/JCI5073
  20. 20. Yarishkin O., Lee D.Y., Kim E., Cho C.-H., Choi J. H., Lee C. J., Hwang E. M., and Park J.-Y. TWIK-1 contributes to the intrinsic excitability of dentate granule cells in mouse hippocampus. Mol. Brain, 7, 80 (2014).DOI: 10.1186/s13041-014-0080-z
  21. 21. Bauer C. K. and Schwarz J. R. Ether-à-Go-Go K+ channels: Effective modulators of neuronal excitability. J. Physiol., 596 (5), 769–783 (2018). DOI: 10.1113/JP275477
  22. 22. Mishra P. and Narayanan R. Ion-channel degeneracy: Multiple ion channels heterogeneously regulate intrinsic physiology of rat hippocampal granule cells. Physiol. Rep., 9, e14963 (2021). DOI: 10.14814/phy2.14963
  23. 23. Raimondo J. V., Burman R. J., Katz A. A., and Akerman C. J. Ion dynamics during seizures. Front. Cell. Neurosci., 9, 419 (2015). DOI: 10.3389/fncel.2015.00419
  24. 24. Antonio L. L., Anderson M. L., Angamo E. A., Gabriel S., Klaft Z.-J., Liotta A., Salar S., Sandow N., and Heinemann U. In vitro seizure like events and changes in ionic concentration. J. Neurosci. Methods, 260, 33–44 (2016). DOI: 10.1016/j.jneumeth.2015.08.014
  25. 25. R asmussen R., O’Donnell J., Ding F., and Nedergaard M. Interstitial ions: A key regulator of statedependent neural activity? Prog. Neurobiol., 193, 101802 (2020). DOI: 10.1016/j.pneurobio.2020.101802
  26. 26. Traynelis S. F. and Dingledine R. Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol., 59, 259–276 (1988).DOI: 10.1152/jn.1988.59.1.259
  27. 27. Jensen M. S. and Yaari Y. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J. Neurophysiol., 77, 1224–1233 (1997).DOI: 10.1152/jn.1997.77.3.1224
  28. 28. Bikson M., Hahn P. J., Fox J. E., and Jefferys J. Depolarization block of neurons during maintenance of electrographic seizures. J. Neurophysiol., 90 (4), 2402–2408 (2003). DOI: 10.1152/jn.00467.2003
  29. 29. Pan E. and Stringer J. L. Role of potassium and calcium in the generation of cellular bursts in the dentate gyrus. J. Neurophysiol., 77, 2293–2299 (1997).DOI: 10.1152/jn.1997.77.5.2293
  30. 30. Lee-Liu D. and Gonzalez-Billault C. Neuron-intrinsic origin of hyperexcitability during early pathogenesis of Alzheimer’s disease: An editorial highlight for ‘hippocampal hyperactivity in a rat model of Alzheimer’s disease’ on https://doi.org/10.1111/jnc.15323. J. Neurochem., 158, 586–588 (2021). DOI: 10.1111/jnc.15248
  31. 31. Sanabria E. R., Su H., and Yaari Y. Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy. J. Physiol., 532, 205–216 (2001).DOI: 10.1111/j.1469-7793.2001.0205g.x
  32. 32. Hofer K.T., Kandrács Á., Tóth K., Hajnal B., Bokodi V., Tóth E.Z., Erőss L., Entz L., Bagó A.G., Fabó D., Ulbert I., and Wittner L. Bursting of excitatory cells is linked to interictal epileptic discharge generation in humans. Sci. Rep., 12, 6280 (2022). DOI: 10.1038/s41598022-10319-4
  33. 33. Somjen G. G. and Müller M. Potassium-induced enhancement of persistent inward current in hippocampal neurons in isolation and in tissue slices. Brain Res., 885, 102–110 (2000). DOI: 10.1016/s0006-8993(00)02948-С
  34. 34. Yamashita T., Horio Y., Yamada M., Takahashi N., Kondo C., and Kurachi Y. Competition between Mg2+ and spermine for a cloned IRK2 channel expressed in a human cell line. J. Physiol., 493 (Pt 1), 143–156 (1996).DOI: 10.1113/jphysiol.1996.sp021370
  35. 35. Ishihara K. and Ehara T. A repolarization-induced transient increase in the outward current of the inward rectifier K+ channel in guinea-pig cardiac myocytes. J. Physiol., 510 (Pt 3), 755–771 (1998).DOI: 10.1111/j.1469-7793.1998.755bj.x
  36. 36. Dhamoon A. S., Pandit S. V., Sarmast F., Parisian K. R., Guha P., Li Y., Bagwe S., Taffet S. M., and Anumonwo J. M. B. Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current. Circ. Res., 94, 1332–1339 (2004).DOI: 10.1161/01.RES.0000128408.66946.67
  37. 37. McCormick D. A. and Pape H. C. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J. Physiol., 431, 291–318 (1990). DOI: 10.1113/jphysiol.1990.sp018331
  38. 38. Azene E. M., Xue T., and Li R. A. Molecular basis of the effect of potassium on heterologously expressed pacemaker (HCN) channels. J. Physiol., 547, 349–356 (2003). DOI: 10.1113/jphysiol.2003.039768
  39. 39. Averin A. S., Konakov M. V., Pimenov O. Y., Galimova M. H., Berezhnov A. V., Nenov M. N., and Dynnik V. V. Regulation of papillary muscle contractility by NAD and ammonia interplay: Contribution of ion channels and exchangers. Membranes (Basel), 12 (12), 1239 (2022). DOI: 10.3390/membranes12121239
  40. 40. Cui E. D. and Strowbridg B. W. Selective attenuation of Ether-a-go-go related K+ currents by endogenous acetylcholine reduces spike-frequency adaptation and network correlation eLife. eLife, 29 (8), e44954 (2019).DOI: 10.7554/eLife.44954
  41. 41. Goaillard J.-M. and Marder E. Ion channel degeneracy, variability, and covariation in neuron and circuit resilience. Annu. Rev. Neurosci., 44, 335–357 (2021).DOI: 10.1146/annurev-neuro-092920-121538
  42. 42. Fröhlich F., Bazhenov M., Iragui-Madoz V., and Sejnowski T. J. Potassium dynamics in the epileptic cortex: new insights on an old topic. Neuroscientist, 14, 422–433 (2008). DOI: 10.1177/1073858408317955
  43. 43. de Curtis M., Uva L., Gnatkovsky V., and Librizzi L. Potassium dynamics and seizures: why is potassium ictogenic? Epilepsy Res., 143, 50–59 (2018).DOI: 10.1016/j.eplepsyres.2018.04.005
  44. 44. Proskurina E. Yu. and Zaitsev A. V. Regulation of potassium and chloride concentrations in nervous tissue as a method of anticonvulsant therapy J. Evol. Biochem. Physiol., 58 (5), 1275–1292 (2008).DOI: 10.1134/S0022093022050015
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library