- PII
- S30345278S0006302925040103-1
- DOI
- 10.7868/S3034527825040103
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 4
- Pages
- 715-723
- Abstract
- The aim of the work is to study the effect of 24-hour effect of ethanol (50 and 100 mmol/L) on proliferation, contraction and migration of vascular smooth muscle cells (VSMCs) from rat thoracic aorta. The following age groups of rats were studied: early neonatal period of development (1-week-old rats), puberty age (5-month-old rats) and the initial period of aging (1-year-old rats). The following methods were used in the work: real-time PCR to assess the proliferation of VSMCs by comparing the relative amount of genomic DNA between the control and the experiment; wound healing assay to determine the migration of VSMCs; the collagen gel contraction assay to assess the contraction of VSMCs. Ethanol 50 mmol/L did not have effect on the studied parameters of VSMCs. Ethanol 100 mmol/L resulted in: increase of proliferation ~38% (р ≤0.01) and decrease the contraction ~12% (р ≤ 0.01) of VSMCs of rats of the early neonatal period of development; decrease the contraction ~7% (р ≤ 0.01) and proliferation ~21% (р ≤ 0.01) of VSMCs of rats of puberty age and animals of the initial period of aging, respectively. Thus, ethanol 100 mmol/L had different effects on VSMCs of rats depending on age group of animals. It is worth noting that VSMCs of rats of the early neonatal period of development are more sensitive to effects of ethanol.
- Keywords
- этанол пролиферативная миграционная сократительная активности гладкомышечные клетки аорты сократительный и пролиферативный фенотипы
- Date of publication
- 13.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 37
References
- 1. Hu Y., Cai Zh., and He B. Smooth muscle heterogeneity and plasticity in health and aortic aneurysmal disease. Int. J. Mol. Sci., 24 (14), 11701 (2023).DOI: 10.3390/ijms241411701
- 2. Cao G., Xuan X., Hu J., Zhang R., Jin H., and Dong H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun. Signal., 20 (1), 180 (2022). DOI: 10.1186/s12964-022-00993-2
- 3. Saito H., Hayashi H., Ueda T., Mine T., and Kumita S. I. Changes in aortic wall thickness at a site of entry tear on computed tomography before development of acute aortic dissection. Ann. Vasc. Dis., 12 (3), 379–384 (2019).DOI: 10.3400/avd.oa.19-00051
- 4. Rombouts K. B., van Merrienboer T. A. R., Ket J. C. F., Bogunovic N., van der Velden J., and Yeung K. K. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur. J. Clin. Invest., 52 (4), e13697 (2022). DOI: 10.1111/eci.13697
- 5. Frismantiene A., Philippova M., Erne P., and Resink T. J. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal., 52, 48– 64 (2018). DOI: 10.1016/j.cellsig.2018.08.019
- 6. Tang H. Y., Chen A. Q., Zhang H., Gao X. F., Kong X. Q., and Zhang J. J. Vascular smooth muscle cells phenotypic switching in cardiovascular diseases. Cells, 11 (24), 4060 (2022). DOI: 10.3390/cells11244060
- 7. Davis-Dusenbery B. N., Wu C., and Hata A. Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler. Thromb. Vasc. Biol., 31 (11), 2370–7237 (2011).DOI: 10.1161/ATVBAHA.111.226670
- 8. Chen R., McVey D. G., Shen D., Huang X., and Ye S. Phenotypic switching of vascular smooth muscle cells in atherosclerosis. J. Am. Heart Assoc., 12 (20), e031121 (2023). DOI: 10.1161/JAHA.123.031121
- 9. Marx S. O., Totary-Jain H., and Marks A. R. Vascular smooth muscle cell proliferation in restenosis. Circ. Cardiovasc. Interv., 4 (1), 104–111 (2011).DOI: 10.1161/CIRCINTERVENTIONS.110.957332
- 10. Shi N. and Chen S. Y. Smooth muscle cell differentiation: Model systems, regulatory mechanisms, and vascular diseases. J. Cell Physiol., 231 (4), 777–787 (2016).DOI: 10.1002/jcp.25208
- 11. Yoshida T. and Owens G. K. Molecular determinants of vascular smooth muscle cell diversity. Circ. Res., 96 (3), 280–291 (2005).DOI: 10.1161/01.RES.0000155951.62152.2e
- 12. Owens G. K. Regulation of differentiation of vascular smooth muscle cells. Physiol. Rev., 75 (3), 487–517 (1995). DOI: 10.1152/physrev.1995.75.3.487
- 13. Louis S. F. and Zahradka P. Vascular smooth muscle cell motility: From migration to invasion. Exp. Clin. Cardiol., 15 (4), e75–85 (2010).
- 14. Owens G. K., Kumar M. S., and Wamhoff B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev., 84 (3), 767–801 (2004). DOI: 10.1152/physrev.00041.2003
- 15. Yogi A., Callera G. E., Hipólito U. V., Silva C. R., Touyz R. M., and Tirapelli C. R. Ethanol-induced vasoconstriction is mediated via redox-sensitive cyclo-oxygenase-dependent mechanisms. Clin. Sci. (Lond.), 118 (11), 657–668 (2010). DOI: 10.1042/CS20090352
- 16. Alleyne J. and Dopico A. M. Alcohol use disorders and their harmful effects on the contractility of skeletal, cardiac and smooth muscles. Adv. Drug Alcohol Res., 1, 10011 (2021). DOI: 10.3389/ADAR.2021.10011
- 17. Badran A., Nasser S. A., Mesmar J., El-Yazbi A. F., Bitto A., Fardoun M. M., Baydoun E., and Eid A. H. Reactive oxygen species: Modulators of phenotypic switch of vascular smooth muscle cells. Int. J. Mol. Sci., 21 (22), 8764 (2020). DOI: 10.3390/ijms21228764
- 18. Held K. F. and Dostmann W. R. Sub-nanomolar sensitivity of nitric oxide mediated regulation of cGMP and vasomotor reactivity in vascular smooth muscle. Front. Pharmacol., 3, 130 (2012). DOI: 10.3389/fphar.2012.00130
- 19. Rocha J. T., Hipólito U. V., Callera G. E., Yogi A., Neto Filho Mdos A., Bendhack L. M., Touyz R. M., and Tirapelli C. R. Ethanol induces vascular relaxation via redoxsensitive and nitric oxide-dependent pathways. Vascul. Pharmacol., 56 (1–2), 74–83 (2012).DOI: 10.1016/j.vph.2011.11.006
- 20. Briner V. A., Tsai P., Wang X., and Schrier R. W. Divergent effects of acute and chronic ethanol exposure on contraction and Ca2+ mobilization in cultured vascular smooth muscle cells. Am. J. Hypertens., 6 (4), 268–275 (1993). DOI: 10.1093/ajh/6.4.268
- 21. Ghiselli G., Chen J., Kaou M., Hallak H., and Rubin R. Ethanol inhibits fibroblast growth factor-induced proliferation of aortic smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 23 (10), 1808–1813 (2003).DOI: 10.1161/01.ATV.0000090140.20291.CE
- 22. Mao N., Gu T., Shi E., Zhang G., Yu L., and Wang C. Phenotypic switching of vascular smooth muscle cells in animal model of rat thoracic aortic aneurysm. Interact. Cardiovasc. Thorac. Surg., 21 (1), 62–70 (2015).DOI: 10.1093/icvts/ivv074
- 23. Truett G. E., Heeger P., Mynatt R. L., Truett A. A., Walker J. A., and Warman M. L. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques, 29 (1), 52–54 (2000).DOI: 10.2144/00291bm09
- 24. Терюкова Н. П., Андреев Г. В., Воронкина И. В., Сахенберг Е. И. и Снопов С. А. Асцитная гепатома Зайдела как континуум для опухолевых клеток в транзитном состоянии. Цитология, 62 (7), 473–486 (2020). DOI: 10.31857/S0041377120070068
- 25. Rajan N., Habermehl J., Coté M. F., Doillon C. J., and Mantovani D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat. Protoc., 1 (6), 2753–2758 (2006). DOI: 10.1038/nprot.2006.430
- 26. Singh P . and Zheng X.-L. Dual regulation of myocardin expression by tumor necrosis factor-α in vascular smooth muscle cells. PLoS One, 9 (11), e112120 (2014).DOI: 10.1371/journal.pone.0112120
- 27. Cook C. L., Weiser M. C., Schwartz P. E., Jones C. L., and Majack R. A. Developmentally timed expression of an embryonic growth phenotype in vascular smooth muscle cells. Circ. Res., 74 (2), 189–196 (1994).DOI: 10.1161/01.res.74.2.189
- 28. Gerthoffer W. T. Mechanisms of vascular smooth muscle cell migration. Circ. Res., 100 (5), 607–621 (2007). DOI: 10.1161/01.RES.0000258492.96097.47
- 29. Elmarasi M., Elmakaty I., Elsayed B., Elsayed A., Zein J. A., Boudaka A., and Eid A. H. Phenotypic switching of vascular smooth muscle cells in atherosclerosis, hypertension, and aortic dissection. J. Cell Physiol., 239 (4), e31200 (2024). DOI: 10.1002/jcp.31200
- 30. Ureña J., Fernández-Tenorio M., Porras-González C., González-Rodríguez P., Castellano A., and López-Barneo J. A new metabotropic role for L-type Ca2+ channels in vascular smooth muscle contraction. Curr. Vasc. Pharmacol., 11 (4), 490–496 (2013).DOI: 10.2174/1570161111311040012
- 31. Touyz R. M. and Schiffrin E. L. Measurement of intracellular free calcium ion concentration in vascular smooth muscle cells: fluorescence imaging of cytosolic calcium. Methods Mol. Med., 51, 341–354 (2001).DOI: 10.1385/1-59259-087-X:341
- 32. Kudryavtseva O., Aalkjaer C., and Matchkov V. V. Vascular smooth muscle cell phenotype is defined by Ca2+-dependent transcription factors. FEBS J., 280 (21), 5488– 5499 (2013). DOI: 10.1111/febs.12414
- 33. Zhang A., Cheng T. P., and Altura B. M. Ethanol decreases cytosolic-free calcium ions in vascular smooth muscle cells as assessed by digital image analysis. Alcohol Clin. Exp. Res., 16 (1), 55–57 (1992).DOI: 10.1111/j.1530-0277.1992.tb00635.x
- 34. Cain M. L., Hester R. L., and Izevbigie E. B. Ethanol abrogates angiotensin II-stimulated vascular smooth muscle cell growth. Med. Sci. Monit., 12 (5), BR162-8 (2006).
- 35. Sayeed S., Cullen J. P., Coppage M., Sitzmann J. V., and Redmond E. M. Ethanol differentially modulates the expression and activity of cell cycle regulatory proteins in rat aortic smooth muscle cells. Eur. J. Pharmacol., 445 (3), 163–170 (2002). DOI: 10.1016/s0014-2999(02)01761-2
- 36. Hendrickson R. J., Cahill P. A., McKillop I. H., Sitzmann J. V., and Redmond E. M. Ethanol inhibits mitogen activated protein kinase activity and growth of vascular smooth muscle cells in vitro. Eur. J. Pharmacol., 362 (2–3), 251–259 (1998).DOI: 10.1016/s0014-2999(98)00771-7
- 37. Sachinidis A., Gouni-Berthold I., Seul C., Seewald S., KoY., Schmitz U., and Vetter H. Early intracellular signalling pathway of ethanol in vascular smooth muscle cells. Br. J. Pharmacol., 128 (8), 1761–7171 (1999).DOI: 10.1038/sj.bjp.0702969
- 38. Monk B. A. and George S. J. The effect of ageing on vascular smooth muscle cell behaviour – A mini-review. Gerontology, 61 (5), 416–426 (2015).DOI: 10.1159/000368576
- 39. Kajuluri L. P., Singh K., and Morgan K. G. Vascular aging, the vascular cytoskeleton and aortic stiffness. Explor. Med., 2, 186–197 (2021).DOI: 10.37349/emed.2021.00041
- 40. Martín-Pardillos A. and Sorribas V. Effects of donor age and proliferative aging on the phenotype stability of rat aortic smooth muscle cells. Physiol. Rep., 3 (11), e12626 (2015). DOI: 10.14814/phy2.12626
- 41. https://grantome.com/grant/NIH/Z01-AG000808-02
- 42. Hendrickson R. J., Okada S. S., Cahill P. A., Yankah E., Sitzmann J. V., and Redmond E. M. Ethanol inhibits basal and flow-induced vascular smooth muscle cell migration in vitro. J. Surg. Res., 84 (1), 64–70 (1999).DOI: 10.1006/jsre.1999.5605
- 43. Cullen J. P., Sayeed S., Kim Y., Theodorakis N. G., Sitzmann J. V., Cahill P. A., and Redmond E. M. Ethanol inhibits pulse pressure-induced vascular smooth muscle cell migration by differentially modulating plasminogen activator inhibitor type 1, matrix metalloproteinase-2 and -9. Thromb. Haemost., 94 (3), 639–645 (2005).DOI: 10.1160/TH05-03-0174
- 44. Tirapelli C. R., Leone A. F., Coelho E. B., Resstel L. B., Corrêa F. M., Lanchote V. L., Uyemura S. A., Padovan C. M., and de Oliveira A. M. Effect of ethanol consumption on blood pressure and rat mesenteric arterial bed, aorta and carotid responsiveness. J. Pharm. Pharmacol., 59 (7), 985–993 (2007). DOI: 10.1211/jpp.59.7.0011