- PII
- S30345278S0006302925040157-1
- DOI
- 10.7868/S3034527825040157
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 4
- Pages
- 757-770
- Abstract
- Cancer cells exhibit increased activity of mobile genetic elements (transposons). A possible anticancer strategy involves exploiting the energy costs associated with abnormal activity of these elements to create conditions of energy starvation within the cell and initiate cell death programs. Here, we propose a stochastic model of energy balance in a cell population considering the energy expenditure associated with retrotransposition of LINE-1 and SINE mobile elements. Parameter values in the model were derived from published data and new experimental measurements of ATP quantities in MCF-7 cells under normal and hypomethylation conditions. Numerical stochastic simulations generated distributions of variables representing the number of mRNA molecules, proteins participating in principal energy-intensive cellular processes, and the number of active LINE-1 and SINE retrotransposons in the genome. Energy expenditure distributions across major cellular processes were also calculated under stationary conditions. Results show that low-energy costs linked to retrotransposition of mobile elements under normal conditions rise considerably upon perturbation of model parameters. These findings could inform practical scenarios influencing energetically mediated initiation of cell death programs in cancer cells through activation of mobile elements.
- Keywords
- мобильные генетические элементы MCF-7 ретротранспозоны LINE-1 SINE биоэнергетика клетки стохастическое моделирование онкология
- Date of publication
- 13.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 39
References
- 1. Kazazian H. H. Mobile elements: Drivers of genome evolution. Science, 303, 1626–1632 (2004).DOI: 10.1126/science.1089670
- 2. Mills R. E., Bennett E. A., Iskow R. C., and Devine S. E. Which transposable elements are active in the human genome? Trends Genet., 23, 183–191 (2007).DOI: 10.1016/j.tig.2007.02.006
- 3. Schrader L. and Schmitz J. The impact of transposable elements in adaptive evolution. Mol. Ecol., 28, 1537–1549 (2019). DOI: 10.1111/mec.14794
- 4. Kassiotis G. and Stoye J. P. Immune responses to endogenous retroelements: Taking the bad with the good. Nat. Rev. Immunol., 16, 207–219 (2016).DOI: 10.1038/nri.2016.27
- 5. Elbarbary R. A., Lucas B. A., and Maquat L. E. Retrotransposons as regulators of gene expression. Science, 351 (6274), aac7247 (2016).DOI: 10.1126/science.aac7247
- 6. Burns K. H. Our conflict with transposable elements and its implications for human disease. Annu. Rev. Pathol., 15, 51–70 (2020).DOI: 10.1146/annurev-pathmechdis-012419-032633
- 7. Ishak C. A. and De Carvalho D. D. Reactivation of endogenous retroelements in cancer development and therapy. Annu. Rev. Cancer Biol., 4, 159–176 (2020).DOI: 10.1146/annurev-cancerbio-030419-033525
- 8. Leonova K. I., Brodsky L., Lipchick B., Pal M., Novototskaya L., Chenchik A. A., Sen G. C., Komarova E. A., and Gudkov A. V. P53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc. Natl. Acad. Sci. USA, 110, E89–E98 (2013).DOI: 10.1073/pnas.1216922110
- 9. Chiappinelli K. B., Strissel P. L., Desrichard A., Li H., Henke C., Akman B., Hein A., Rote N. S., Cope L. M., Snyder A., Makarov V., Buhu S., Slamon D. J., Wolchok J. D., Pardoll D. M., Beckmann M. W., Zahnow C. A., Merghoub T., Chan T. A., and Baylin S. B. Reiner Strick Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell, 162 (5), 974–986 (2015).DOI: 10.1016/j.cell.2015.07.011
- 10. Roulois D., Loo Yau H., Singhania R., Wang Y., Danesh A., Shen S. Y., Han H., Liang G., Jones P. A., Pugh T. J., O’Brien C., and De Carvalho D. D. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell, 162, 961–973 (2015). DOI: 10.1016/j.cell.2015.07.056
- 11. Ishak C. A., Classon M., and De Carvalho D. D. Deregulation of retroelements as an emerging therapeutic opportunity in cancer. Trends Cancer, 4 (8), 583–597 (2018). DOI: 10.1016/j.trecan.2018.05.008
- 12. Pradhan R. K. and Ramakrishna W. Transposons: Unexpected players in cancer. Gene, 808, 145975 (2022).DOI: 10.1016/j.gene.2021.145975
- 13. Павлов С. Р., Гурский В. В., Самсонова М. Г., Канапин А. А. и Самсонова А. А. Управление активностью мобильных элементов в раковых клетках как стратегия для противораковой терапии. Биофизика, 69 (6), 1231–1234 (2024).
- 14. Vander Heiden M. G., Cantley L. C., and Thompson C. B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324, 1029–1033 (2009). DOI: 10.1126/science.1160809
- 15. Hanahan D. and Weinberg R. A. Hallmarks of cancer: The next generation. Cell, 144, 646–674 (2011).DOI: 10.1016/j.cell.2011.02.013
- 16. Kasperski A. and Kasperska R. Bioenergetics of life, disease and death phenomena. Theory Biosci., 137, 155–168 (2018). DOI: 10.1007/s12064-018-0266-5
- 17. Eguchi Y., Shimizu S., and Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res., 57, 1835–1840 (1997).
- 18. Liebertha W., Menza S. A., and Levine J. S. Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am. J. Physiol., 274, F315– F327 (1998). DOI: 10.1152/ajprenal.1998.274.2.F315
- 19. Skulachev V. P. Bioenergetic Aspects of apoptosis, necrosis and mitoptosis. Apoptosis., 11, 473–485 (2006).DOI: 10.1007/s10495-006-5881-9
- 20. Lynch M. and Marinov G. K. The bioenergetic costs of a gene. Proc. Natl. Acad. Sci. USA, 112 (51), 15690–15695 (2015). DOI: 10.1073/pnas.1514974112
- 21. Weiße A. Y., Oyarzún D. A., Danos V., and Swain P. S. Mechanistic links between cellular trade-offs, gene expression, and growth. Proc. Natl. Acad. Sci. USA, 112 (9), E1038–E1047 (2015). DOI: 10.1073/pnas.1416533112
- 22. Thomas P., Terradot G., Danos V., and Weiße A. Y. Sources, propagation and consequences of stochasticity in cellular growth. Nat. Commun., 9, 4528 (2018).DOI: 10.1038/s41467-018-06912-9
- 23. Gillespie D. T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22, 403–434 (1976).DOI: 10.1016/0021-9991(76)90041-3
- 24. Gillespie D. T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361 (1977). DOI: 10.1021/j100540a008
- 25. Cao Y., Gillespie D. T., and Petzold L. R. Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys., 124, 044109 (2006).DOI:10.1063/1.2159468
- 26. Eisenberg E. and Levanon E. Y. Human Housekeeping genes, revisited. Trends Genet., 29, 569–574 (2013).DOI: 10.1016/j.tig.2013.05.010
- 27. Milo R. and Phillips R. Cell biology by the numbers (Garland Science, 2015).
- 28. Scott A. F., Schmeckpeper B. J., Abdelrazik M., Comey C. T., O’Hara B., Rossiter J. P., Cooley T., Heath P., Smith K. D., and Margolet L. Origin of the human l1 elements: Proposed progenitor genes deduced from a consensus DNA sequence. Genomics, 1, 113–125 (1987). DOI: 10.1016/0888-7543(87)90003-6
- 29. Batzer M. A. and Deininger P. L. Alu repeats and human genomic diversity. Nat. Rev. Genet., 3, 370–379 (2002). DOI:10.1038/nrg798
- 30. Phillips R., Kondev J., Theriot J., and Garcia H. Physical biology of the cell, 2nd ed. (Garland Science, N.Y., 2012).
- 31. Reardon J. E. Human immunodeficiency virus reverse transcriptase: steady-state and pre-steady-state kinetics of nucleotide incorporation. Biochemistry, 31 (18), 4473– 4479 (1992). DOI: 10.1021/bi00133a013
- 32. Reddy B. and Yin J. Quantitative intracellular kinetics of HIV type 1. AIDS Research and Human Retroviruses, 15, 273–283 (1999). DOI: 10.1089/088922299311457
- 33. Shapiro S. S. and Wilk M. B. An Analysis of variance test for normality (complete samples). Biometrika, 52, 591– 611 (1965). DOI: 10.1093/biomet/52.3-4.591
- 34. Solovyov A., Behr J. M., Hoyos D., Banks E., Drong A. W., Zhong J. Z., Garcia-Rivera E., McKerrow W., Chu C., Zaller D. M., Fromer M., and Greenbaum B. D. Mechanism-guided quantification of LINE-1 reveals p53 regulation of both retrotransposition and transcription. BioRxiv, 2023, 539471 (2023).DOI: 10.1101/2023.05.11.539471