RAS BiologyБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

Dihydroquercetin Normalizes Glucose Levels and Suppresses Oxidative Stress in the Aorta of Alloxan-Treated Rats

PII
S30345278S0006302925040186-1
DOI
10.7868/S3034527825040186
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
787-793
Abstract
Pathological changes in blood vessels in diabetes are determined by oxidative stress. The effect of flavonoids on oxidative stress in blood vessels in diabetes has not been studied. In this work, we investigated the effect of flavanonol dihydroquercetin on blood glucose levels, the activity of angiotensin-converting enzyme, and the formation of reactive oxygen species in the aorta of rats with alloxan-induced diabetes. The activity of the angiotensin converting enzyme in the aortic segments was determined by the hydrolysis of hypuryl-L-histidylL-leucine, and the formation of reactive oxygen species was evaluated by the oxidation of dichlorodihydrofluorescein. It has been shown that dihydroquercetin reduces blood glucose levels, angiotensin-converting enzyme activity, and formation of reactive oxygen species in the aorta of diabetic rats to the values of these parameters in the aorta of control rats. Dihydroquercetin also normalizes the glucose tolerance test in diabetic rats. The effects of dihydroquercetin disappear after stopping its consumption. Thus, dihydroquercetin may be useful for the treatment of diabetes, but its consumption should be continuous.
Keywords
аорта активные формы кислорода аллоксан ангиотензин-превращающий фермент диабет дигидрокверцетин
Date of publication
13.12.2025
Year of publication
2025
Number of purchasers
0
Views
34

References

  1. 1. Ostrauskas R. The prevalence of type 1 diabetes mellitus among 15−34-year-aged Lithuanian inhabitants during 1991–2010. Prim. Care Diabetes, 9 (2), 105–111 (2015). DOI: 10.1016/j.pcd.2014.07.009
  2. 2. Delbin M. A. and Trask A. J. The diabetic vasculature: Physiological mechanisms of dysfunction and influence of aerobic exercise training in animal models. Life Sci, 102 (1), 1–9 (2014). DOI: 10.1016/j.lfs.2014.02.021
  3. 3. Kayama Y., Raaz U., Jagger A., Adam M., Schellinger I. N., Sakamoto M. M., Suzuki H., Toyama K., Spin J. M., and Tsao P. S. Diabetic cardiovascular disease induced by oxidative stress. Int. J. Mol. Sci., 16 (10), 25234–25263 (2015). DOI: 10.3390/ijms161025234
  4. 4. Dandona P., Thusu K., Cook S., Snyder B., Makowski J., Armstrong D., and Nicotera T. Oxidative damage to DNA in diabetes mellitus. Lancet, 347 (8999), 444–445 (1996).
  5. 5. Coskun O., Kanter M., Korkmaz A., and Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol. Res., 51 (2), 117–123 (2005).DOI: 10.1016/j.phrs.2004.06.002
  6. 6. Mahesh T., and Menon V.P. Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytotherapy Res, 18 (2), 123–127 (2004). DOI: 10.1002/ptr.1374
  7. 7. Vessal M., Hemmati M., and Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Compar. Biochem. Physiolog. Part C, 135 (3), 357–364 (2003). DOI: 10.1016/S1532-0456(03)00140-6
  8. 8. Ahmed S., Mundhe N., Borgohain M., Chowdhury L., Kwatra M., Ahmed A., and Lahkar M. Diosmin modulates the NF-kB signal transduction pathwaysand downregulation of various oxidative stress markersin alloxan-induced diabetic nephropathy. Inflammation, 39 (5), 1783– 1797 (2016). DOI: 10.1007/s10753-016-0413-4
  9. 9. Arutyunyan T. V., Korystova A. F., Kublik L. N., Levitman M. Kh., Shaposhnikova V. V., and Korystov Y. N. Effects of taxifolin on the activity of angiotensin-converting enzyme and reactive oxygen and nitrogen species in the aorta of aging rats and rats treated with the nitric oxide synthase inhibitor and dexamethasone. Age, 35, 2089– 2097 (2013). DOI: 10.1007/s11357-012-9497-4
  10. 10. Samokhvalova T. V., Kim Y. A., Korystova A. F., Kublik L. N., Shaposhnikova V. V., and Korystov Y. N. (+)-Catechin stereoisomer and gallate induce oxidative stress in rat aorta. Molecules, 27, 3379 (2022).DOI: 10.3390/molecules27113379
  11. 11. Kim Y. A., Korystova A. F., Kublik L. N., Levitman M. Kh., Shaposhnikova V. V., and Korystov Y. N. Flavonoids decrease the radiation-induced increase in the activity of the angiotensin-converting enzyme in rat aorta. Eur. J. Pharmacol., 837 (1), 33–37 (2018).DOI: 10.1016/j.ejphar.2018.08.029
  12. 12. Griendling K. K., Minieri C. A., Ollerenshaw J. D., and Alexander R. W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res., 74 (6), 1141–1148 (1994).DOI: 10.1161/01.RES.74.6.1141
  13. 13. Anikina V. A., Kim Y. A., Korystova A. F., Levitman M. Kh., Shaposhnikova V. V., and Korystov Y. N. Effects of catechin on activity of angiotensin-converting enzyme and generation of reactive oxygen species in rat aorta. Bull. Exp. Biol. Med., 168 (11), 565–568 (2019). DOI: 10.1007/s10517-020-04766-0
  14. 14. Arutyunyan T. V., Korystova A. F., Kublik L. N., Levitman M. Kh., Shaposhnikova V. V., and Korystov Y. N. Taxifolin and fucoidin abolish the irradiation-induced increase in the production of reactive oxygen species in rat aorta. Bull. Exp. Biol. Med., 160 (5), 635–638 (2016). DOI: 10.1007/s10517-016-3236-2
  15. 15. Hasana Md. M., Ahmed Q. U., Soada S. Z. M., and Tunnab T. S. Animal models and natural products to investigate in vivo and in vitro antidiabetic activity. Biomed. Pharmacother., 101, 833–841 (2018).DOI: 10.1016/j.biopha.2018.02.137
  16. 16. Young P. W., Cawthorne M. A., Coyle P. J., Holder J. C., and Smith S. A. Report on the treatment of obese mice with BRL-49653, a new and potent insulin sensitizer, enhances insulin action in white adipocytes. Association with increased insulin binding and cell surface GLUT4 as measured by photo affinity labeling. Diabetes, 44 (9), 1087–1092 (1995). DOI: 10.2337/diab.44.9.1087
  17. 17. Ackermann A., Fernandez-Alfonso M. S., Sanchez-deRojas R., Ortega T., Paul M., and González C. Modulation of angiotensin-converting enzyme by nitric oxide. Br. J. Pharmacol., 124 (2), 291–298 (1998).DOI: 10.1038/sj.bjp.0701836
  18. 18. Miyamoto A., Murata S., and Nishio A. Role of ACE and NEP in bradykinin-induced relaxation and contraction response of isolated porcine basilar artery. NaunynSchmiedeberg’s Arch. Pharmacol., 365 (5), 365–370 (2002). DOI: 10.1007/s00210-002-0543-0
  19. 19. Korystov Y. N., Emel’yanov M. O., Korystova A. F., Levitman M. Kh., and Shaposhnikova V. V. Determination of reactive oxygen and nitrogen species in rat aorta using the dichlorofluorescein assay. Free Radic. Res., 43 (2), 149– 155 (2009). DOI: 10.1080/10715760802644686
  20. 20. Hanhineva K., Törrönen R., Bondia-Pons I., Pekkinen J., Kolehmainen M., Mykkänen H., and Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci., 11 (4), 1365–1402 (2010).DOI: 10.3390/ijms11041365
  21. 21. Hii C. S. T. and Howell S. L. Effects of epicatechin on rat islets of Langerhans. Diabetes, 33 (3), 291–296 (1984). DOI: 10.2337/diab.33.3.291
  22. 22. Montanya E., Nacher V., Biarnés M., and Soler J. Linear correlation between β-cell mass and body weight throughout the lifespan in Lewis rats. Role of β-cell hyperplasia and hypertrophy. Diabetes, 49 (8) 1341–1346 (2000). DOI: 10.2337/diabetes.49.8.1341
  23. 23. Hadcocks S., Richardson M., Winocour P., and Hatton M. W. C. Intimal alterationsin the first six months of alloxan-induced diabetes. Arterioscler. Thromb. Vasc. Biol., 11 (3), 517–529 (1991).DOI: 10.1161/01.ATV.11.3.517
  24. 24. Kim J. A., Berliner J. A., Natarajan R. D., and Nadler J. L. Evidence that glucose increases monocyte binding to human aortic endothelial cells. Diabetes, 43 (9), 1103–1107 (1994). DOI: 10.2337/diab.43.9.1103
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library