ОБНБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

ПОЛУЧЕНИЕ И СВОЙСТВА ИОДСОДЕРЖАЩИХ ВОЛОКОН ПОЛИЛАКТИДА

Код статьи
S0006302925010015-1
DOI
10.31857/S0006302925010015
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 70 / Номер выпуска 1
Страницы
5-13
Аннотация
С использованием методологии крейзинга в жидких средах получены биоактивные волокна полилактида, содержащие 6 масс.% иода, и характеризующиеся высокими механическими характеристиками – модулем упругости порядка 3 ГПа и прочностью 125 МПа. Показано, что иод в таких материалах однородно распределен по объему полимера и формирует наночастицы размером 5–15 нм. Обнаружено, что процесс деструкции иодсодержащих волокон полилактида в модельной среде с фосфатно-солевым буфером при 37°С происходит достаточно быстро – за 6 недель значение молекулярной массы полимера снижается практически на порядок до 9.4 кДа, а дисперсность возрастает до 5.5. В условиях in vivo в присутствии иодсодержащих волокон подавляется фаза воспалительной реакции и стимулируется гипертрофия мышечной ткани.
Ключевые слова
полилактид иод волокна прочность деструкция
Дата публикации
24.10.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
11

Библиография

  1. 1. Oleksy M., Dynarowicz K., and Aebisher D. Advances in biodegradable polymers and biomaterials for medical applications – A review. Molecules, 28 (17), 6213 (2023). DOI: 10.3390/molecules28176213
  2. 2. Kurowiak J., Klekiel T., and Będziński R. Biodegradable polymers in biomedical applications: A review – developments, perspectives and future challenges. Int. J. Mol. Sci., 24 (23), 16952 (2023). DOI: 10.3390/ijms242316952
  3. 3. Bansal P., Katiyar D., Prakash S., Raghavendra Rao N. G., Saxena V., Kumar V., and Kumar A. Applications of some biopolymeric materials as medical implants: An overview. Materials Today: Proceedings, 65 (8), 3377 (2022). DOI: 10.1016/j.matpr.2022.05.480
  4. 4. Gomzyak V. I., Demina V. A., Razuvaeva E. V., Sedush N. G., and Chvalun S. N. Biodegradable polymer materials for medical applications: from implants to organs. Fine Chem. Technol., 12 (5), 5–20 (2017). DOI: 10.32362/2410-6593-2017-12-5-5-20
  5. 5. Abang S., Wong F., Sarbatly R., Sariau J., Baini R., and Besar N. A. Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications. J. Bioresources Bioproducts, 8 (4), 361–387 (2023). DOI: 10.1016/j.jobab.2023.06.005
  6. 6. Li H., Wang Z., Robledo-Lara J. A., He J., Huang Y., and Cheng F. Antimicrobial surgical sutures: Fabrication and application of infection prevention and wound healing. Fibers Polym., 22, 2355–2367 (2021). DOI: 10.1007/s12221-021-0026-x
  7. 7. Li Y., Meng Q., Chen Sh., Ling P., Kuss M. A., Duan B., and Wu Sh. Advances, challenges, and prospects for surgical suture materials. Acta Biomater., 168, 78–112 (2023). DOI: 10.1016/j.actbio.2023.07.041
  8. 8. Samanth M. and Bhat K. S. Conventional and unconventional chemical treatment methods of natural fibres for sustainable biocomposites. Sustainable Chemistry for Climate Action, 3, 100034 (2023). DOI: 10.1016/j.scca.2023.100034
  9. 9. Demina V. A., Sedush N. G., Goncharov E. N., Krasheninnikov S. V., Krupnin A. E., Goncharov N. G., and Chvalun S. N. Biodegradable nanostructured composites for surgery and regenerative medicine. Nanotechnol. Russia, 16, 2–18 (2021). DOI: 10.1134/S2635167621010043
  10. 10. Xu L., Liu Y., Zhou W., and Yu D. Electrospun medical sutures for wound healing: A review. Polymers, 14 (9), 1637 (2022). DOI: 10.3390/polym14091637
  11. 11. Relinque J. J., de León A. S., Hernández-Saz J., GarcíaRomero M. G., Navas-Martos F. J., Morales-Cid G., Molina S. I. Development of surface-coated polylactic acid/polyhydroxyalkanoate (PLA/PHA) nanocomposites. Polymers, 11 (3), 400 (2019). DOI: 10.3390/polym11030400
  12. 12. Beitzel K., Voss A., McCarthy M. B., Russell R. P., Apostolakos J., Cote M. P., and Mazzocca A. D. Coated Sutures. Sports Medicine and Arthroscopy Review, 23 (3), 25–30 (2015). DOI: 10.1097/JSA.0000000000000074
  13. 13. Öksüz K. E., Kurt B., Şahin İnan Z. D., and Hepokur C. Novel bioactive glass/graphene oxide-coated surgical sutures for soft tissue regeneration. ACS Omega, 8 (24), 21628–21641 (2023). DOI: 10.1021/acsomega.3c00978
  14. 14. Volynskii A. L., and Bakeev N. Ph. Solvent Crazing of Polymers (Elsevier, Amsterdam, 1995).
  15. 15. Yarysheva A. Yu., Bagrov D. V., Bakirov A. V., Yarysheva L. M., Chvalun S. N., and Volynskii A. L. Effect of initial polypropylene structure on its deformation via crazing mechanism in a liquid medium. Eur. Polymer J., 100, 233–240 (2018). DOI: 10.1016/j.eurpolymj.2018.01.040
  16. 16. Arzhakova O. V., Dolgova A. A., and Volynskii A. L. Mesoporous and nanocomposite fibrous materials based on poly(ethylene terephthalate) fibers with high craze density via environmental crazing: preparation, structure, and applied properties. ACS Appl. Mater. Interfaces, 11 (20), 18701–18710 (2019). DOI: 10.1021/acsami.9b02570
  17. 17. Gupta B., Revagade N., and Hilborn J. Poly(lactic acid) fiber: An overview. Progr. Polymer Sci., 32 (4), 455–482 (2007). DOI: 10.1016/j.progpolymsci.2007.01.005
  18. 18. Perepelkin K. E. Polylactide fibres: Fabrication, properties, use, prospects. A review. Fibre Chem., 34, 85–100 (2002). DOI: 10.1023/A:1016359925976
  19. 19. Avinc O., and Khoddami A. Overview of poly(lactic acid) (PLA) fibre. Fibre Chem., 41, 391–401 (2009). DOI: 10.1007/s10692-010-9213-z
  20. 20. Trofimchuk E. S., Efimov A. V., Grokhovskaya T. E., Nikonorova N. I., Moskvina M. A., Sedush N. G., Dorovatovskii P. V., Ivanova O. A., Rukhlya E. G., Volynskii A. L., and Chvalun S. N. Cold crystallization of glassy polylactide during solvent crazing. ACS Appl. Mater. Interfaces, 9 (39), 34325–34336 (2017). DOI: 10.1021/acsami.7b09666
  21. 21. Trofimchuk E. S., Nikonorova N. I., Moskvina M. A., Efimov A. V., Khavpachev M. A., and Volynskii A. L. Influence of liquid media on the craze initiation in amorphous polylactide. Polymer, 142, 43–47 (2018). DOI: 10.1016/j.polymer.2018.03.023
  22. 22. Trofimchuk E. S., Efimov A. V., Moskvina M. A., Ivanova O. A., Nikonorova N. I., Zezin S. B., Bakirov A. V., and Volynskii A. L. Nanocomposites based on porous polylactide, obtained by crazing mechanism in water–ethanol solutions, and calcium phosphates. Polym. Sci. Ser. A, 60, 845–853 (2018). DOI: 10.1134/S0965545X19010097
  23. 23. Khavpachev M. A., Trofimchuk E. S., Nikonorova N. I., Garina E. S., Moskvina M. A., Efimov A. V., DeminaV. A., Bakirov A. V., Sedush N. G., Potseleev V. V., Cherdyntseva T. A., and Chvalun S. N. Bioactive polylactide fibrous materials prepared by crazing mechanism. Macromol. Mater. Eng., 305, 2000163 (2020). DOI: 10.1002/mame.202000163
  24. 24. Potseleev V. V., Trofimchuk E. S., and Nikonorova N. I. Kinetics of the release of brilliant green from nanoporous polylactide obtained by a crazing mechanism. Mendeleev Commun., 31 (4), 515–516 (2021). DOI: 10.1016/j.mencom.2021.07.026
  25. 25. Определение чувствительности микроорганизмов к антибактериальным препаратам: Методические указания (Федеральный центр госсанэпиднадзора Минздрава России, М., 2004), http://docs.cntd.ru/document/1200038583.
  26. 26. Khavpachev M. A., Trofimchuk E. S., Puchkov A. A., Demina V. A., Sedush N. G., Nikonorova N. I., Balobanova S. I., and Chvalun S. N. Effect of ethanol solution of iodine on degradation of poly(ε-caprolactone). Mendeleev Commun., 33 (3), 411–412 (2023). DOI: 10.1016/j.mencom.2023.04.035
  27. 27. Trofimchuk E. S., Moskvina M. A., Nikonorova N. I., Efimov A. V., Garina E. S., Grokhovskaya T. E., Ivanova O. A., Bakirov A. V., Sedush N. G., and Chvalun S. N. Hydrolytic degradation of polylactide films deformed by the environmental crazing mechanism. Eur. Polymer J., 139, 110000 (2020). DOI: 10.1016/j.eurpolymj.2020.110000
  28. 28. De Queiroz A. A. A., França É. J., Abraham G. A., and Román J. S. Ring-opening polymerization of ∈-caprolactone by iodine charge-transfer complex. J. Polym. Sci. B. Polym. Phys., 40 (8), 714–722 (2002). DOI: 10.1002/polb.10133
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека