- PII
- S0006302925010015-1
- DOI
- 10.31857/S0006302925010015
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 1
- Pages
- 5-13
- Abstract
- Bioactive polylactide fibers with 6 wt% iodine content were produced using the crazing in liquid media. These fibers exhibited good mechanical properties, with an elastic modulus within the order of 3 GPa and strength of 125 MPa. It has been shown that iodine is uniformly distributed throughout the polymer material, forming nanoparticles with a size of 5−15 nm. It has been found that the degradation of iodine-containing polylactide fibers in a model medium of the PBS buffer at 37°C occurs quite quickly, and in 6 weeks the value of the molecular weight of the polymer decreases by almost ten times of magnitude to 9.4 kDa, and the dispersion increases to 5.5. In the presence of iodine-containing fibers, the phase of the inflammatory reaction is suppressed, and proliferative processes are stimulated during the experiment in vivo.
- Keywords
- полилактид иод волокна прочность деструкция
- Date of publication
- 24.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 18
References
- 1. Oleksy M., Dynarowicz K., and Aebisher D. Advances in biodegradable polymers and biomaterials for medical applications – A review. Molecules, 28 (17), 6213 (2023). DOI: 10.3390/molecules28176213
- 2. Kurowiak J., Klekiel T., and Będziński R. Biodegradable polymers in biomedical applications: A review – developments, perspectives and future challenges. Int. J. Mol. Sci., 24 (23), 16952 (2023). DOI: 10.3390/ijms242316952
- 3. Bansal P., Katiyar D., Prakash S., Raghavendra Rao N. G., Saxena V., Kumar V., and Kumar A. Applications of some biopolymeric materials as medical implants: An overview. Materials Today: Proceedings, 65 (8), 3377 (2022). DOI: 10.1016/j.matpr.2022.05.480
- 4. Gomzyak V. I., Demina V. A., Razuvaeva E. V., Sedush N. G., and Chvalun S. N. Biodegradable polymer materials for medical applications: from implants to organs. Fine Chem. Technol., 12 (5), 5–20 (2017). DOI: 10.32362/2410-6593-2017-12-5-5-20
- 5. Abang S., Wong F., Sarbatly R., Sariau J., Baini R., and Besar N. A. Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications. J. Bioresources Bioproducts, 8 (4), 361–387 (2023). DOI: 10.1016/j.jobab.2023.06.005
- 6. Li H., Wang Z., Robledo-Lara J. A., He J., Huang Y., and Cheng F. Antimicrobial surgical sutures: Fabrication and application of infection prevention and wound healing. Fibers Polym., 22, 2355–2367 (2021). DOI: 10.1007/s12221-021-0026-x
- 7. Li Y., Meng Q., Chen Sh., Ling P., Kuss M. A., Duan B., and Wu Sh. Advances, challenges, and prospects for surgical suture materials. Acta Biomater., 168, 78–112 (2023). DOI: 10.1016/j.actbio.2023.07.041
- 8. Samanth M. and Bhat K. S. Conventional and unconventional chemical treatment methods of natural fibres for sustainable biocomposites. Sustainable Chemistry for Climate Action, 3, 100034 (2023). DOI: 10.1016/j.scca.2023.100034
- 9. Demina V. A., Sedush N. G., Goncharov E. N., Krasheninnikov S. V., Krupnin A. E., Goncharov N. G., and Chvalun S. N. Biodegradable nanostructured composites for surgery and regenerative medicine. Nanotechnol. Russia, 16, 2–18 (2021). DOI: 10.1134/S2635167621010043
- 10. Xu L., Liu Y., Zhou W., and Yu D. Electrospun medical sutures for wound healing: A review. Polymers, 14 (9), 1637 (2022). DOI: 10.3390/polym14091637
- 11. Relinque J. J., de León A. S., Hernández-Saz J., GarcíaRomero M. G., Navas-Martos F. J., Morales-Cid G., Molina S. I. Development of surface-coated polylactic acid/polyhydroxyalkanoate (PLA/PHA) nanocomposites. Polymers, 11 (3), 400 (2019). DOI: 10.3390/polym11030400
- 12. Beitzel K., Voss A., McCarthy M. B., Russell R. P., Apostolakos J., Cote M. P., and Mazzocca A. D. Coated Sutures. Sports Medicine and Arthroscopy Review, 23 (3), 25–30 (2015). DOI: 10.1097/JSA.0000000000000074
- 13. Öksüz K. E., Kurt B., Şahin İnan Z. D., and Hepokur C. Novel bioactive glass/graphene oxide-coated surgical sutures for soft tissue regeneration. ACS Omega, 8 (24), 21628–21641 (2023). DOI: 10.1021/acsomega.3c00978
- 14. Volynskii A. L., and Bakeev N. Ph. Solvent Crazing of Polymers (Elsevier, Amsterdam, 1995).
- 15. Yarysheva A. Yu., Bagrov D. V., Bakirov A. V., Yarysheva L. M., Chvalun S. N., and Volynskii A. L. Effect of initial polypropylene structure on its deformation via crazing mechanism in a liquid medium. Eur. Polymer J., 100, 233–240 (2018). DOI: 10.1016/j.eurpolymj.2018.01.040
- 16. Arzhakova O. V., Dolgova A. A., and Volynskii A. L. Mesoporous and nanocomposite fibrous materials based on poly(ethylene terephthalate) fibers with high craze density via environmental crazing: preparation, structure, and applied properties. ACS Appl. Mater. Interfaces, 11 (20), 18701–18710 (2019). DOI: 10.1021/acsami.9b02570
- 17. Gupta B., Revagade N., and Hilborn J. Poly(lactic acid) fiber: An overview. Progr. Polymer Sci., 32 (4), 455–482 (2007). DOI: 10.1016/j.progpolymsci.2007.01.005
- 18. Perepelkin K. E. Polylactide fibres: Fabrication, properties, use, prospects. A review. Fibre Chem., 34, 85–100 (2002). DOI: 10.1023/A:1016359925976
- 19. Avinc O., and Khoddami A. Overview of poly(lactic acid) (PLA) fibre. Fibre Chem., 41, 391–401 (2009). DOI: 10.1007/s10692-010-9213-z
- 20. Trofimchuk E. S., Efimov A. V., Grokhovskaya T. E., Nikonorova N. I., Moskvina M. A., Sedush N. G., Dorovatovskii P. V., Ivanova O. A., Rukhlya E. G., Volynskii A. L., and Chvalun S. N. Cold crystallization of glassy polylactide during solvent crazing. ACS Appl. Mater. Interfaces, 9 (39), 34325–34336 (2017). DOI: 10.1021/acsami.7b09666
- 21. Trofimchuk E. S., Nikonorova N. I., Moskvina M. A., Efimov A. V., Khavpachev M. A., and Volynskii A. L. Influence of liquid media on the craze initiation in amorphous polylactide. Polymer, 142, 43–47 (2018). DOI: 10.1016/j.polymer.2018.03.023
- 22. Trofimchuk E. S., Efimov A. V., Moskvina M. A., Ivanova O. A., Nikonorova N. I., Zezin S. B., Bakirov A. V., and Volynskii A. L. Nanocomposites based on porous polylactide, obtained by crazing mechanism in water–ethanol solutions, and calcium phosphates. Polym. Sci. Ser. A, 60, 845–853 (2018). DOI: 10.1134/S0965545X19010097
- 23. Khavpachev M. A., Trofimchuk E. S., Nikonorova N. I., Garina E. S., Moskvina M. A., Efimov A. V., DeminaV. A., Bakirov A. V., Sedush N. G., Potseleev V. V., Cherdyntseva T. A., and Chvalun S. N. Bioactive polylactide fibrous materials prepared by crazing mechanism. Macromol. Mater. Eng., 305, 2000163 (2020). DOI: 10.1002/mame.202000163
- 24. Potseleev V. V., Trofimchuk E. S., and Nikonorova N. I. Kinetics of the release of brilliant green from nanoporous polylactide obtained by a crazing mechanism. Mendeleev Commun., 31 (4), 515–516 (2021). DOI: 10.1016/j.mencom.2021.07.026
- 25. Определение чувствительности микроорганизмов к антибактериальным препаратам: Методические указания (Федеральный центр госсанэпиднадзора Минздрава России, М., 2004), http://docs.cntd.ru/document/1200038583.
- 26. Khavpachev M. A., Trofimchuk E. S., Puchkov A. A., Demina V. A., Sedush N. G., Nikonorova N. I., Balobanova S. I., and Chvalun S. N. Effect of ethanol solution of iodine on degradation of poly(ε-caprolactone). Mendeleev Commun., 33 (3), 411–412 (2023). DOI: 10.1016/j.mencom.2023.04.035
- 27. Trofimchuk E. S., Moskvina M. A., Nikonorova N. I., Efimov A. V., Garina E. S., Grokhovskaya T. E., Ivanova O. A., Bakirov A. V., Sedush N. G., and Chvalun S. N. Hydrolytic degradation of polylactide films deformed by the environmental crazing mechanism. Eur. Polymer J., 139, 110000 (2020). DOI: 10.1016/j.eurpolymj.2020.110000
- 28. De Queiroz A. A. A., França É. J., Abraham G. A., and Román J. S. Ring-opening polymerization of ∈-caprolactone by iodine charge-transfer complex. J. Polym. Sci. B. Polym. Phys., 40 (8), 714–722 (2002). DOI: 10.1002/polb.10133