- PII
- S0006302925010098-1
- DOI
- 10.31857/S0006302925010098
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 1
- Pages
- 78-85
- Abstract
- The subunits of the voltage-gated potassium channels Kv1.1 and Kv1.2 can form both homo- and heterotetrameric channels in cells. This significantly affects the functional properties and localization of the formed Kv1 channels. Confocal microscopy based on Förster resonance energy transfer was used to study the formation of Kv1 channels during co-expression of subunits Kv1.1(S369T) and Kv1.2(S371T), fused with the fluorescent protein mKate2 and TagCFP, respectively, in murine neuroblastoma Neuro-2a cells. Due to mutation, these subunits provide enhanced transfer of Kv1 channels in plasma membrane. It was found that TagCFP-Kv1.1(S369T) and mKate2-Kv1.2(S371T) effectively form heterochannels that are localized both on the membrane and in the cytoplasm of cells. In the absence of the S369T mutation, heterochannels are not embedded in the membrane, which indicates the need for auxiliary factors for the transfer of native heterochannels into the cell membrane. In addition to heterochannels, homotetrameric channels are also formed in cells, but the effectiveness of the formation of heterochannels is much higher.
- Keywords
- калиевые каналы потенциал-зависимые гетеротетрамеры фёрстеровский резонансный перенос энергии конфокальная микроскопия
- Date of publication
- 24.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 14
References
- 1. Ovsepian S. V., Leberre M., Steuber V., O'Leary V. B., Leibold Ch. J., and Dolly O. Distinctive role of Kv1.1 subunit in the biology and functions of low threshold K+ channels with implications for neurological disease. Pharmacol. Ther., 159, 93–101 (2016). DOI: 10.1016/j.pharmthera.2016.01.005
- 2. Al-Sabi A., Kaza S. K., Dolly O. J., and Wang J. Pharmacological characteristics of Kv1.1- and Kv1.2-containing channels are influenced by the stoichiometry and positioning of their α subunits. Biochem. J., 454, 101–108 (2013). DOI: 10.1042/BJ20130297
- 3. 3. Robbins C. A. and Tempel B. L. Kv1.1 and Kv1.2: similar channels, different seizure models. Epilepsia, 53 (Suppl 1), 134–141 (2012). DOI: 10.1111/J.1528-1167.2012.03484.X
- 4. Ma Z., Lavebratt C., Almgren M., Portwood N., Forsberg L. E., Bränström R., Berglund E., Falkmer S., Sundler F., Wierup N., and Björklund A. Evidence for presence and functional effects of Kv1.1 channels in β-cells: general survey and results from mceph/mceph mice. PLoS One, 6 (4), e18213 (2011). DOI: 10.1371/journal.pone.0018213
- 5. Fellerhoff-Losch B., Korol S. V., Ganor Y., Gu S., Cooper I., Eilam R., Besser M., Goldfinger M., Chowers Y., Wank R., Birnir B., and Levite M. Normal human CD4(+) helper T cells express Kv1.1 voltage-gated K+ channels, and selective Kv1.1 block in T cells induces by it-self robust TNFα production and secretion and activation of the NFκB non-canonical pathway. J. Neural Transm.(Vienna), 123, 137–157 (2016). DOI: 10.1007/s00702-015-1446-9
- 6. Park W. S., Firth A. L., Han J., and Ko E. A. Patho-, physiological roles of voltage-dependent K+ channels in pulmonary arterial smooth muscle cells. J. Smooth Muscle Res., 46, 89–105 (2010). DOI: 10.1540/jsmr.46.89
- 7. Pinatel D. and Faivre-Sarrailh C. Assembly and Function of the Juxtaparanodal Kv1 Complex in Health and Disease. Life (Basel), 11, 1–22 (2020). DOI: 10.3390/LIFE11010008
- 8. Manganas L. N. and Trimmer J. S. Subunit composition determines Kv1 potassium channel surface expression. J. Biol. Chem., 275, 29685–29693 (2000). DOI: 10.1074/JBC.M005010200
- 9. Duménieu M., Oulé M., Kreutz M. R., and LopezRojas J. The segregated expression of voltage-gated potassium and sodium channels in neuronal membranes: functional implications and regulatory mechanisms. Front. Cell. Neurosci., 11, 115 (2017). DOI: 10.3389/fncel.2017.00115
- 10. Capera J., Serrano-Novillo C., Navarro-Pérez M., Cassinelli S., and Felipe A. The potassium channel odyssey: Mechanisms of traffic and membrane arrangement. Int. J. Mol. Sci., 20, 734 (2019). DOI: 10.3390/ijms20030734
- 11. Manganas L. N., Wang Q., Scannevin R. H., and Trimmer J. S. Identification of a trafficking determinant localized to the Kv1 potassium channel pore. Proc. Natl. Acad. Sci. USA, 98, 14055–14059 (2001). DOI: 10.1073/PNAS.241403898
- 12. Zhu J., Watanabe I., Gomez B., and Thornhill W. B. Determinants involved in Kv1 potassium channel folding in the endoplasmic reticulum, glycosylation in the Golgi, and cell surface expression. J. Biol. Chem., 276, 39419–39427 (2001). DOI: 10.1074/JBC.M107399200
- 13. Zhu J., Gomez B., Watanabe I., and Thornhill W. B. Amino acids in the pore region of Kv1 potassium channels dictate cell-surface protein levels: a possible trafficking code in the Kv1 subfamily. Biochem. J., 388, 355–362 (2005). DOI: 10.1042/BJ20041447
- 14. Orlov N. A., Kryukova E. V., Efremenko A. V., Yakimov S. A., Toporova V. A., Kirpichnikov M. P., Nekrasova O. V., and Feofanov A. V. Interactions of the Kv1.1 channel with peptide pore blockers: A fluorescent analysis on mammalian cells. Membranes (Basel), 13 (7), 645 (2023). DOI: 10.3390/membranes13070645
- 15. Ignatova A. A., Kryukova E. V., Novoseletsky V. N., Kazakov O. V., Orlov N. A., Korabeynikova V. N., Larina M. V., Fradkov A. F., Yakimov S. A., Kirpichnikov M. P., Feofanov A. V., and Nekrasova O. V. New high-affinity peptide ligands for Kv1.2 channel: selective blockers and fluorescent probes. Cells, 13 (24), 2096 (2024). DOI: 10.3390/cells13242096
- 16. Orlov N. A., Ignatova A. A., Kryukova E. V., Yakimov S. A., Kirpichnikov M. P., Nekrasova O. V., and Feofanov A. V. Combining mKate2-Kv1.3 channel and Atto488-hongotoxin for the studies of peptide pore blockers on living eukaryotic cells. Toxins (Basel), 14 (12), 858 (2022). DOI: 10.3390/toxins14120858