ОБНБиофизика Biophysics

  • ISSN (Print) 0006-3029
  • ISSN (Online) 3034-5278

ВЛИЯНИЕ КУРЕНИЯ НА СОСТОЯНИЕ ТИОЛДИСУЛЬФИДНОЙ СИСТЕМЫ В ПЛАЗМЕ КРОВИ И ЧАСТОТУ TCR-МУТАНТНЫХ ЛИМФОЦИТОВ ЗДОРОВЫХ ЛИЦ И ОНКОЛОГИЧЕСКИХ БОЛЬНЫХ

Код статьи
S0006302925020198-1
DOI
10.31857/S0006302925020198
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 70 / Номер выпуска 2
Страницы
404-416
Аннотация
Проведено сравнительное исследование показателей соматического мутагенеза и тиолдисульфидной системы в периферической крови онкологических больных до лечения и здоровых лиц с разным статусом курения (n = 95). В общей группе больных обнаружено статистически значимое повышение всех исследованных показателей в 1.5–2.7 раза по сравнению с таковыми в общей группе здоровых лиц (р < 0.01) для этих же показателей, включая содержание восстановленного и окисленного глутатиона и их отношение, частоту лимфоцитов с мутациями по локусу Т-клеточного рецептора. При этом после прекращения курения у больных наблюдалось снижение частоты мутантных лимфоцитов и отношения восстановленного и окисленного глутатиона (р < 0.05). На индивидуальном уровне обнаружены сильные корреляционные связи частоты мутантных клеток с содержанием восстановленного (r = 0.82, p < 0.001) и окисленного глутатиона (r = 0.68, p < 0.01) только в подгруппе курящих больных с высоким уровнем мутагенеза. Полученные результаты указывают на вклад тиолдисульфидной системы в формирование высокой частоты генных мутаций у части курящих лиц с онкологическими заболеваниями.
Ключевые слова
курение онкологические больные восстановленный и окисленный глутатион частота TCR-мутантных лимфоцитов плазма крови
Дата публикации
24.10.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
16

Библиография

  1. 1. Solak I., Cetinkaya C. D., Gederet Y. T., Kozanhan B., Erel O., and Eryilmaz M. A. Effects of smoking on thiol/disulfide homeostasis. Eur. Rev. Med. Pharmacol. Sci., 22 (8), 2477–2482 (2017). DOI: 10.26355/eurrev_201804_14842
  2. 2. Sies H. and Jones D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell. Biol., 21 (7), 363 (2020). DOI: 10.1038/s41580-020-0230-3
  3. 3. Chauhan P., Reddy S. S., Chokkanna V. K., Singh P., and Majumdar K. Oxidant and antioxidant status among tobacco users: A cross-sectional study. Natl. J. Maxillofac. Surg., 14 (3), 444 (2023). DOI: 10.4103/njms.njms_517_21
  4. 4. Ghezzi P. Role of glutathione in immunity and inflammation in the lung. Int. J. Gen. Med., 4, 105–113 (2011). DOI: 10.2147/IJGM.S15618
  5. 5. Domenicotti C. and Marengo B. Paradox role of oxidative stress in cancer: State of the art. Antioxidants (Basel), 11 (5), 1027 (2022). DOI: 10.3390/antiox11051027
  6. 6. Lambring C. B., Chen L., Nelson C., Stevens A., Bratcher W., and Basha R. Oxidative stress and cancer: Harnessing the therapeutic potential of curcumin and analogues against cancer. Eur. J. Biol., 82 (2), 317 (2023). DOI: 10.26650/eurjbiol.2023.1348427
  7. 7. Shadfar S., Parakh S., Jamali M. S., and Atkin J. D. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl. Neurodegener., 12 (1), 18 (2023), DOI: 10.1186/s40035-023-00350-4
  8. 8. Roos E., Heikkinen S., Seppa K., Pietilainen O., Ryynanen H., Laaksonen M., Roos T., Knekt P., Mannisto S., Harkanen T., Jousilahti P., Koskinen S., Eriksson J. G., Malila N., Rahkonen O., and Pitkaniemi J. Pairwise association of key lifestyle factors and risk of solid cancers −A prospective pooled multi-cohort register study. Prev. Med. Rep., 38 (10), 2607 (2024), DOI: 10.1016/j.pmedr.2024.102607
  9. 9. Hafızoğlu M., Eren F., Neşelioğlu S., Şahiner Z., Karaduman D., Atbaş C., Dikmeer A., İleri İ., Balcı C., Doğu B. B., Cankurtaran M., Erel O., and Halil M. G. Physical frailty is related to oxidative stress through thiol/disulfide homeostasis parameters. Eur. Geriatr. Med., 15 (2), 423 (2024). DOI: 10.1007/s41999-023-00911-w
  10. 10. Korkmaz Ş. A., Kaymak S. U., Neşelioğlu S., and Erel O. Thiol-disulphide homeostasis in patients with schizophrenia: The potential biomarkers of oxidative stress in acute exacerbation of schizophrenia. Clin. Psychopharmacol. Neurosci., 22 (1), 139 (2024). DOI: 10.9758/cpn.23.1084
  11. 11. Desideri E., Ciccarone F., and Ciriolo M. R. Targeting glutathione metabolism: Partner in crime in anticancer therapy. Nutrients, 11, 1926 (2019). DOI: 10.3390/nu11081926
  12. 12. Nitti M., Marengo B., Furfaro A. L., Pronzato M. A., Marinari U. M., Domenicotti C., and Traverso N. Hormesis and oxidative distress: Pathophysiology of reactive oxygen species and the open question of antioxidant modulation and supplementation. Antioxidants (Basel), 11 (8), 1613 (2022). DOI: 10.3390/antiox11081613
  13. 13. Halliwell B. Reactive Species and Antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 141 (2), 312–322 (2006). DOI: 10.1104/pp.106.077073
  14. 14. Musaogullari A. and Yuh-Cherng Ch. Redox regulation by protein S-glutathionylation: From molecular mechanisms to implications in health and disease. Int. J. Mol. Sci., 21, 8113 (2020). DOI: 10.3390/ijms21218113
  15. 15. Lu S. C. Glutathione synthesis. Biochim. Biophys. Acta, 1830, 3143 (2013). DOI: 10.1016/j.bbagen.2012.09.008
  16. 16. Vivancos P. D., Wolff T., Markovic J., Pollardo F. V., and Foyer C. H. A nuclear glutathione cycle within the cell cycle. Biochem J., 431, 169 (2010). DOI.org/10.1042/BJ20100409
  17. 17. Corso C. R. and Acco A. Glutathione system in animal model of solid tumors: From regulation to therapeutic targe. Crit. Rev. Oncol. Hematol., 128, 43 (2018).
  18. 18. Liguori I., Russo G., Curcio F., Bulli G., Aran L., DellaMorte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., and Abete P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 13, 757 (2018).
  19. 19. Buşu C., Li W., Caldito G., and Yee T. An inhibition of glutathione synthesis in brain endothelial cells lengthens S-phase transit time in the cell cycle: Implications for proliferation in recovery from oxidative stress and endothelial cell damage. Redox Biol., 1 (1), 131–139 (2013). DOI: 10.1016/j.redox.2013.01.003
  20. 20. Yamashita R., Komaki Y., Yang G., and Ibuki Y. Cell linedependent difference in glutathione levels affects the cigarette sidestream smoke-induced inhibition of nucleotide excision repair. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 858-860, 503273 (2020). DOI: 10.1016/j.mrgentox.2020.503273
  21. 21. Emre S., Demirseren D. D., Alisik M., Aktas A., Neselioglu S., and Erel O. Dynamic thiol/disulfide homeostasis and effects of smoking on homeostasis parameters in patients with psoriasis. Cutan. Ocul. Toxicol., 36 (4), 393 (2017). DOI: 10.1080/15569527.2017.1311339
  22. 22. Erel O. and Erdoğan S. Thiol-disulfide homeostasis: an integrated approach with biochemical and clinical aspects. Turk. J. Med. Sci., 50 (10), Article 17 (2020). DOI: 10.3906/sag-2003-64
  23. 23. Calaf G. M., Urzua U., Termini L., and Aguayo F. Oxidative stress in female cancers. Oncotarget, 9 (34), 23824–23842 (2018). DOI: 10.18632/oncotarget.25323
  24. 24. Kalinina E. V., Gavriliuk L. A., and Pokrovsky V. S. Oxidative Stress and Redox-Dependent Signaling in Prostate Cancer. Biochemistry (Moscow), 87 (5), 413 (2022). DOI: 10.1134/S0006297922050030
  25. 25. Kyoizumi S., Akiyama M., Hirai Y., Kusunoki Y., Tanabe K., and Umeki S. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells. J. Exp. Med., 171 (6), 1981 (1990).
  26. 26. Замулаева И. А., Саенко А. С., Орлова Н. В. и Смирнова С. Г. Патент на изобретение ≪Способ определения частоты мутантных по Т-клеточному рецептору лимфоцитов периферической крови человека≫ №2316766 (Россия), приоритет от 30 мая 2006 г., зарегистрирован 10 февраля 2008 г.
  27. 27. McNeil T. L. and Beck L. Y. Fluorometric estimation of GSH-OPT. Anal. Biochem., 22, 431 (1968).
  28. 28. Ivanenko G. F. and Burlakova E. B. Relationships between a thiol-disulfide system and liposoluble antioxidants with cytogenetic indices in humans exposed to low doses radiation. Engineering, 5 (10B), 62–67 (2013). DOI: 10.4236/eng.2013.510B013
  29. 29. Орлова Н. В., Иваненко Г. Ф., Смирнова С. Г., Максютов М. А. и Замулаева И. А. Частота TCR-мутантных лимфоцитов и состояние тиолдисульфидной системы у работников атомной промышленности. Радиация и риск, 29 (1), 57 (2020). DOI: 10.21870/0131-3878-2020-29-1-57-67
  30. 30. Kennedy L., Sandhu J. K., Harper M. E., and Cuperlovic-Culf M. Role of glutathione in cancer: From mechanisms to therapies. Biomolecules, 10 (10), 1429 (2020). DOI: 10.3390/biom10101429
  31. 31. Marengo B., Nitti M., Furfaro A. L., Colla R., Ciucis C. D., Marinari U. M., Pronzato M. A., Traverso N., and Domenicotti C. Redox Homeostasis and cellular antioxidant systems: Crucial players in cancer growth and therapy. Oxid. Med. Cell Longev., 623, 5641 (2016). DOI: 10.1155/2016/6235641
  32. 32. Kirtonia A., Sethi G., and Garg M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell. Mol. Life Sci., 77 (22), 4459 (2020). DOI: 10.1007/s00018-020-03536-5
  33. 33. Borrego S., Vazquez A., Dasi F., Cerda C., Iradi A., Tormos C., Sanche J. M., Bagan L., Boix J., Zaragoza C., Camps J., and Saez G. Oxidative stress and DNA damage in human gastric carcinoma: 8-Oxo-7'8-dihydro-2'-deoxyguanosine (8-oxo-dG) as a possible tumor marker. Int. J. Mol. Sci., 14 (2), 3467 (2013). DOI:10.3390/ijms14023467
  34. 34. Замулаева И. А., Смирнова С. Г., Орлова Н. В., Богатырева Т. И., Павлов В. В., Терехова А. Ю., Макаренко С. А. и Саенко А. С. Анализ частоты TCR-мутантных лимфоцитов у онкологических больных до и после химиолучевого лечения. Радиация и риск, 20 (1), 8 (2011).
  35. 35. Замулаева И. А. Закономерности соматического мутагенеза на генном уровне после радиационного воздействия в дозах до 200 мЗв на организм человека. Вкн. Избранные лекции, под ред. А.Д. Каприна и С.А. Иванова (МРНЦ им. А.Ф. Цыба, Обнинск, 2022), сс. 199–203.
  36. 36. Иванов В. К., Кащеев В. В., Замулаева И. А., Саенко А. С., Чекин С. Ю., Максютов М. А., Туманов К. А., Смирнова С. Г. и Орлова Н. В. Патент на изобретение ≪Способ формирования группы радиологического риска≫ № 2492480 (Россия), приоритет от 05 июля 2012 г., зарегистрировано 10 сентября 2013 г.
  37. 37. Bonassi S., Norppa H., Ceppi M., Stromberg U., Vermeulen R., Znaor A., Cebulska-Wasilewska A., Fabianova E., Fucic A., Gundy S., Hansteen I. L., Knudsen L. E., Lazutka J., Rossner P., Sram R. J., and Boffetta P. Chromosomal aberration frequency in lymphocytes predicts the risk of cancer: results from a pooled cohort study of 22358 subjects in 11 countries. Carcinogenesis, 29 (6), 1178 (2008). DOI: 10.1093/carcin/bgn075
  38. 38. Cole J. and Scopek T. R. International commission for protection against environmental mutagens and carcinogens. Working paper no. 3. Somatic mutant frequency, mutation rates and mutational spectra in the human population in vivo. Mutat. Res., 304 (1), 33 (1994). DOI: 10.1016/0027-5107(94)90320-4
  39. 39. DeМarini D. M. Genotoxicity of tobacco smoke and tobacco smoke condensate: A review. Mutat. Res., 567 (2–3), 447 (2004). DOI: 10.1016/j.mrrev.2004.02.001
  40. 40. Al-Obaide M. A. I., Ibrahim B. A., Al-Humaish S., and Abdel-Salam A. G. Genomic and bioinformatics approaches for analysis of genes associated with cancer risks following exposure to tobacco smoking. Front. Publ. Health, 6, 84 (2018). DOI: 10.3389/fpubh.2018.00084
  41. 41. Kuśnierczyk P. Genetic differences between smokers and never-smokers with lung cancer. Front. Immunol., 14, 1063716 (2023). DOI: 10.3389/fimmu.2023.1063716
  42. 42. Курбанов И. С., Алиев Д. И. и Ванин А. Ф. Содержание окиси азота в табачном дыме. Журн. физ. химии, 62 (4), 1123 (1988).
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека